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About This Talk

 Focus on the problems we encountered, and 
what we have learned creating a rich internet 
application – because the Programme 
Committee of JAOO heard about our problems
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The Common Medicine Card (CMC)

 Project for the Danish Medicine Agency (The 
government)

 Central repository containing medicine cards for all 
danish citizens

 A medicine card shows the actual medication for a 
person
Everyone in the healthcare sector must use cmc to 
see or change a persons medication

 Today this information is not shared in the 
healthcare sector

3

A project that you really think will 
improve the healthcare sector 
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CMC Overview
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JSON Services SOAP Web Services

Business Layer

Data Access Layer

Relational Database
Distributed model

(Peer-to-Peer network)
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Demo

Demo Time
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Setting the Stage

 This presentation will tell our stories of creating a 
rich web application. 
– We had experience with traditional web 

development.
– This was the teams first rich web app
– We have, and are still learning a lot 
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1st Story 

Choosing Programming Language
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Choosing Programming Language

 Flex (Silverlight) was not an option (Political decision)‏
• Requires Flashplayer

 Started out using javascript
• Javascript is getting a lot of attention
• The common programming language for browsers
• Chose the right tool for the job

– Polyglot programming /pragmatic programmers
• Javascript is not regarded as a toy language anymore

Many regard it as a decent programming language with 
“good parts and bad parts” 

 2 Developers
– Some knowlegde about javascript
– No real javascript experience
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First Sprint – Outcome 

 Javascript problems (Typical problems when moving from 
statically typed to dynamically typed languages)‏
– tooling: debuggers, IDE support

– Hard time structuring javascript code
– Learn a new framework in the new language

• Harder to explore new frameworks in a dynamically typed 
language 

 Abandoned Javascript for Google Web Toolkit 
(GWT)‏
– We had experience with GWT 

Monday, October 5, 2009



Google Web Toolkit 
 Pros

– Use Java Tooling
– Easy to structure and navigate code
– Code is written tested and debugged in java

• It actually works when compiled to javascript

– GWT uses statically typing for optimizations
• Only emit code that is actually used
• Create different Permutations for each browser
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Google Web Toolkit 

 Cons
– Java to javascript layer is introduced – a layer of indirection to the 

runtime environment
– Java is not a very elegant language (anonymous inner classes all over)‏

• GWT compiles java source files – so other JVM languages cannot be 
used

– Hosted mode browser is platform specific
• Cannot use firebug in hosted mode
• gwt compile is slow -> long turnaround when not testing in hosted mode 

browser
• Solved in GWT 2.0
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GWT < > Javascript

 We chose GWT 
– and we don't regret it
– We can leverage our java experience

 Is javascript the programming language or the 
assembly language (jvm) for the browser?

– GWT
– Microsoft's project formerly knows as Volta
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2nd Story 

Choosing Framework
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Nice GUI Component Model

 We chose to use Ext JS (http://www.extjs.com)

– Widely used javascript framework
– Has some good looking widgets
– Build the UI by combining these widgets. 
– Swing like model with layout-managers etc
– Programmers work with high level composable 

widgets (not html)‏

 We kept using Ext with GWT (Ext GWT)‏ 
                                     (http://www.extjs.com)
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But alas.. it did not work...

 Hard to customize the widgets to our needs
– Had to look at the component internals
– Wrestle the code and do a lot of low level html

 Things broke as we combined widgets in different 
ways.

 Browser differences exploded

 Ext GWT did not fit our needs
– We tried to work around it for too long!
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Why did it not work for us?

 The component model did not work
– We were wrestling with the HTML/CSS most of 

the time

 Complex HTML
– Difficult to understand and debug
– Browser differences gets worse as html gets 

complex and nested
• A component worked in one context but not in 

another
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EXT Example

– EXT example

– CMC grid example
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Clean HTML + CSS

 Took the opposite approach
 Start defining the HTML for a component
 Create semantically correct HTML

– Only use tables if you want to display tabular 
data

– Do not nest everything inside divs. etc
– No layout decisions

 HTML creates the structure and contains the data
 Design is pushed to CSS
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Changed the way we work

 We do not use Ext GWT’s or GWT's high level 
widgets

 We work at a lower level
– Components are HTML centric
– Often using the DOM API

 We have created many things from scratch

   Clean html is as important as clean code
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Know your Platform 

20

HTML, DOM, CSS, Javascript (GWT)

 We did not master these technologies
– In the old days “real” programmers did not care much 

for the browser technologies – you could always make 
it work

– “Real men code server side” - not anymore, the client is 
the hard part!

 We teamed up with a designer (html/css wizard)‏

Do not try to abstract away the html - work with it
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3rd Story 

HTML Templates
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Templates

 Focusing on html we created html templates
– Plain html files which we load from resource 

bundles
– Possible to insert “active”elements into the 

template
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Template Example - HTML

23

<dl class="create-effectuation">	
	 <dt>Effektueringstidspunkt:</dt>
	 <dd><input id="{datetime}" type="text" class="mkt-text-input" /></dd>
	 	
	 <dt>V&aelig;lg l&aelig;gemiddel:</dt>
	 <dd>
	 	 <select id="{drug-combo}" name="drug" class="mkt-form-field"/>
	 </dd>
	
	 ...
	 	
</dl>
<div class="buttons">
	 <button id="{button1}">Opret</button>
	 <button id="{button2}">Fortryd</button>
</div>

Show html in application

form layout is not done with a 
table 

Label - input

dl = definition list
dt = definition term
dd = definition description

can look at static html page
select has options
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Template Example - Java
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public class CreateEffectuationPanel extends Composite {
  private DateTimeField effectuationDateTime = new DateTimeField();
  private DrugComboBox drugComboBox = new DrugComboBox();
  
  ...

  private void setupHTML() { //called from the constructor
	 String html = HtmlResources.INSTANCE.createEffectuation().getText();
	 TemplateHTMLPanel panel = new TemplateHTMLPanel(html);
	 	

panel.addAndReplace(effectuationDateTime, "datetime");
	 panel.addAndReplace(drugComboBox, "drug-combo");	 	
	 ...

initWidget(panel);
  }

  ...
}

Use the active 
components in the code.

Add click listeners, 
keyboardlisteners etc
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Templates - Conclusion

 Useful when working with HTML
• What JSP’s are to Servlets
• Alternative to using the DOM API or string 

manipulation in a java class
• View the static html page in a browser

 A widget is typically layed out using a template
 Could probably be improved to be “typesafe” using 

GWT generators
– panel.addAndReplace(drugComboBox, "drug-combo");	 	
– panel.setDrugComboBox(drugComboBox);

 UI Binder in GWT 2.0
25
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4th Story 

Java to JSON Binding
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JSON Services

 SOAP-XML-WS* services existed

 Make same services available 
as HTTP/JSON services:

Expose same services as JSON

Server side support
emit and recieve json

RestFul

But was pretty easy to add 
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JSON at the Client

 GWT has a JSON library

28

{"PriceListVersionDate":"2009-05-06",
 "DrugStructure":[
	 {"DrugIdentifier":28100559669, "DrugName":"Ventoline", ... },
	 {”DrugIdentifier":28101785695,"DrugName":"Ventoline", ... },   
   ...
 ]
}

private void parseJSON(String text) {
	 JSONObject json = JSONParser.parse(text).isObject();
	 String pricelistVersionDate = json.get("PriceListVersionDate").isString().stringValue();
	 System.out.println(pricelistVersionDate);
	 JSONArray drugs = json.get("DrugStructure").isArray();
	 for (int i = 0; i < drugs.size(); i++) {
	 	 JSONObject drug = drugs.get(i).isObject();
	 	 String name = drug.get("DrugName").isString().stringValue();
	 	 double id = drug.get("DrugIdentifier").isNumber().doubleValue();
	 	 System.out.println(name + " (" + id + ")");
	 }	 	
}

JSON objects do not show which data they contain
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JSON to Java Binding on the Client
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JAXB
1. XSD -> Java

2. Use JAXB classes 
    in the GWT client

Java

Java
GWT Runtime enviroment

3. Auto generate JSON 
    serializers/deserializers
    for JAXB classes

JAXB annotated java classes

GWT generator

JAXB annotations

Java
JSON serializer / deserializer 
java classes

4. Create an API for calling
    JSON services

Twist is it has to 
run i GWT
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JSON Services - Conclusion

 Java to JSON binding
• java classes representing the data that can be send 

and received
• We stay in our statically typed world

 Could be a nice open source project

 All this is necessary because we use Java (and not 
javascript)

 The web application uses exactly the same services 
as other systems using CMC
– Added HTTP/JSON interface to CMC 

30
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That was our team’s war stories...

The most important things we have learned

And how we have done things

Hope this can help others not making the same 
mistakes
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What worked for us

 Focus on the HTML. 
• Make semantically correct and clean HTML

 Master the browser technologies
• Know the DOM to manipulate HTML
• Design using CSS

 We found it much easier to structure and debug Java 
code (than javascript code)

• We created templates making it easy to work with HTML
• Created a Java to JSON binding library
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Questions?
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