
Case Study:

The Web 2.0 Front for Denmark’s National
Healthcare Solution.

”4 stories from RIA newbies”
Christian Hvitved, Developer at Trifork

Monday, October 5, 2009

About This Talk

 Focus on the problems we encountered, and
what we have learned creating a rich internet
application – because the Programme
Committee of JAOO heard about our problems

Monday, October 5, 2009

The Common Medicine Card (CMC)

 Project for the Danish Medicine Agency (The
government)

 Central repository containing medicine cards for all
danish citizens

 A medicine card shows the actual medication for a
person
Everyone in the healthcare sector must use cmc to
see or change a persons medication

 Today this information is not shared in the
healthcare sector

3

A project that you really think will
improve the healthcare sector

Monday, October 5, 2009

CMC Overview

4

JSON Services SOAP Web Services

Business Layer

Data Access Layer

Relational Database
Distributed model

(Peer-to-Peer network)

Monday, October 5, 2009

Demo

Demo Time

Monday, October 5, 2009

Setting the Stage

 This presentation will tell our stories of creating a
rich web application.
– We had experience with traditional web

development.
– This was the teams first rich web app
– We have, and are still learning a lot

Monday, October 5, 2009

1st Story

Choosing Programming Language

Monday, October 5, 2009

Choosing Programming Language

 Flex (Silverlight) was not an option (Political decision)‏
• Requires Flashplayer

 Started out using javascript
• Javascript is getting a lot of attention
• The common programming language for browsers
• Chose the right tool for the job

– Polyglot programming /pragmatic programmers
• Javascript is not regarded as a toy language anymore

Many regard it as a decent programming language with
“good parts and bad parts”

 2 Developers
– Some knowlegde about javascript
– No real javascript experience

Monday, October 5, 2009

First Sprint – Outcome

 Javascript problems (Typical problems when moving from
statically typed to dynamically typed languages)‏
– tooling: debuggers, IDE support

– Hard time structuring javascript code
– Learn a new framework in the new language

• Harder to explore new frameworks in a dynamically typed
language

 Abandoned Javascript for Google Web Toolkit
(GWT)‏
– We had experience with GWT

Monday, October 5, 2009

Google Web Toolkit
 Pros

– Use Java Tooling
– Easy to structure and navigate code
– Code is written tested and debugged in java

• It actually works when compiled to javascript

– GWT uses statically typing for optimizations
• Only emit code that is actually used
• Create different Permutations for each browser

Monday, October 5, 2009

Google Web Toolkit

 Cons
– Java to javascript layer is introduced – a layer of indirection to the

runtime environment
– Java is not a very elegant language (anonymous inner classes all over)‏

• GWT compiles java source files – so other JVM languages cannot be
used

– Hosted mode browser is platform specific
• Cannot use firebug in hosted mode
• gwt compile is slow -> long turnaround when not testing in hosted mode

browser
• Solved in GWT 2.0

Monday, October 5, 2009

GWT < > Javascript

 We chose GWT
– and we don't regret it
– We can leverage our java experience

 Is javascript the programming language or the
assembly language (jvm) for the browser?

– GWT
– Microsoft's project formerly knows as Volta

Monday, October 5, 2009

2nd Story

Choosing Framework

Monday, October 5, 2009

Nice GUI Component Model

 We chose to use Ext JS (http://www.extjs.com)

– Widely used javascript framework
– Has some good looking widgets
– Build the UI by combining these widgets.
– Swing like model with layout-managers etc
– Programmers work with high level composable

widgets (not html)‏

 We kept using Ext with GWT (Ext GWT)‏
 (http://www.extjs.com)

Monday, October 5, 2009

http://www.extjs.com
http://www.extjs.com
http://www.extjs.com
http://www.extjs.com

But alas.. it did not work...

 Hard to customize the widgets to our needs
– Had to look at the component internals
– Wrestle the code and do a lot of low level html

 Things broke as we combined widgets in different
ways.

 Browser differences exploded

 Ext GWT did not fit our needs
– We tried to work around it for too long!

Monday, October 5, 2009

Why did it not work for us?

 The component model did not work
– We were wrestling with the HTML/CSS most of

the time

 Complex HTML
– Difficult to understand and debug
– Browser differences gets worse as html gets

complex and nested
• A component worked in one context but not in

another

Monday, October 5, 2009

EXT Example

– EXT example

– CMC grid example

Monday, October 5, 2009

Clean HTML + CSS

 Took the opposite approach
 Start defining the HTML for a component
 Create semantically correct HTML

– Only use tables if you want to display tabular
data

– Do not nest everything inside divs. etc
– No layout decisions

 HTML creates the structure and contains the data
 Design is pushed to CSS

Monday, October 5, 2009

Changed the way we work

 We do not use Ext GWT’s or GWT's high level
widgets

 We work at a lower level
– Components are HTML centric
– Often using the DOM API

 We have created many things from scratch

 Clean html is as important as clean code

Monday, October 5, 2009

Know your Platform

20

HTML, DOM, CSS, Javascript (GWT)

 We did not master these technologies
– In the old days “real” programmers did not care much

for the browser technologies – you could always make
it work

– “Real men code server side” - not anymore, the client is
the hard part!

 We teamed up with a designer (html/css wizard)‏

Do not try to abstract away the html - work with it

Monday, October 5, 2009

3rd Story

HTML Templates

Monday, October 5, 2009

Templates

 Focusing on html we created html templates
– Plain html files which we load from resource

bundles
– Possible to insert “active”elements into the

template

Monday, October 5, 2009

Template Example - HTML

23

<dl class="create-effectuation">	
	 <dt>Effektueringstidspunkt:</dt>
	 <dd><input id="{datetime}" type="text" class="mkt-text-input" /></dd>
	 	
	 <dt>Vælg lægemiddel:</dt>
	 <dd>
	 	 <select id="{drug-combo}" name="drug" class="mkt-form-field"/>
	 </dd>
	
	 ...
	 	
</dl>
<div class="buttons">
	 <button id="{button1}">Opret</button>
	 <button id="{button2}">Fortryd</button>
</div>

Show html in application

form layout is not done with a
table

Label - input

dl = definition list
dt = definition term
dd = definition description

can look at static html page
select has options

Monday, October 5, 2009

Template Example - Java

24

public class CreateEffectuationPanel extends Composite {
 private DateTimeField effectuationDateTime = new DateTimeField();
 private DrugComboBox drugComboBox = new DrugComboBox();

 ...

 private void setupHTML() { //called from the constructor
	 String html = HtmlResources.INSTANCE.createEffectuation().getText();
	 TemplateHTMLPanel panel = new TemplateHTMLPanel(html);
	 	

panel.addAndReplace(effectuationDateTime, "datetime");
	 panel.addAndReplace(drugComboBox, "drug-combo");	 	
	 ...

initWidget(panel);
 }

 ...
}

Use the active
components in the code.

Add click listeners,
keyboardlisteners etc

Monday, October 5, 2009

Templates - Conclusion

 Useful when working with HTML
• What JSP’s are to Servlets
• Alternative to using the DOM API or string

manipulation in a java class
• View the static html page in a browser

 A widget is typically layed out using a template
 Could probably be improved to be “typesafe” using

GWT generators
– panel.addAndReplace(drugComboBox, "drug-combo");	 	
– panel.setDrugComboBox(drugComboBox);

 UI Binder in GWT 2.0
25

Monday, October 5, 2009

4th Story

Java to JSON Binding

Monday, October 5, 2009

JSON Services

 SOAP-XML-WS* services existed

 Make same services available
as HTTP/JSON services:

Expose same services as JSON

Server side support
emit and recieve json

RestFul

But was pretty easy to add

Monday, October 5, 2009

JSON at the Client

 GWT has a JSON library

28

{"PriceListVersionDate":"2009-05-06",
 "DrugStructure":[
	 {"DrugIdentifier":28100559669, "DrugName":"Ventoline", ... },
	 {”DrugIdentifier":28101785695,"DrugName":"Ventoline", ... },
 ...
]
}

private void parseJSON(String text) {
	 JSONObject json = JSONParser.parse(text).isObject();
	 String pricelistVersionDate = json.get("PriceListVersionDate").isString().stringValue();
	 System.out.println(pricelistVersionDate);
	 JSONArray drugs = json.get("DrugStructure").isArray();
	 for (int i = 0; i < drugs.size(); i++) {
	 	 JSONObject drug = drugs.get(i).isObject();
	 	 String name = drug.get("DrugName").isString().stringValue();
	 	 double id = drug.get("DrugIdentifier").isNumber().doubleValue();
	 	 System.out.println(name + " (" + id + ")");
	 }	 	
}

JSON objects do not show which data they contain

Monday, October 5, 2009

JSON to Java Binding on the Client

29

JAXB
1. XSD -> Java

2. Use JAXB classes
 in the GWT client

Java

Java
GWT Runtime enviroment

3. Auto generate JSON
 serializers/deserializers
 for JAXB classes

JAXB annotated java classes

GWT generator

JAXB annotations

Java
JSON serializer / deserializer
java classes

4. Create an API for calling
 JSON services

Twist is it has to
run i GWT

Monday, October 5, 2009

JSON Services - Conclusion

 Java to JSON binding
• java classes representing the data that can be send

and received
• We stay in our statically typed world

 Could be a nice open source project

 All this is necessary because we use Java (and not
javascript)

 The web application uses exactly the same services
as other systems using CMC
– Added HTTP/JSON interface to CMC

30
Monday, October 5, 2009

31

That was our team’s war stories...

The most important things we have learned

And how we have done things

Hope this can help others not making the same
mistakes

Monday, October 5, 2009

What worked for us

 Focus on the HTML.
• Make semantically correct and clean HTML

 Master the browser technologies
• Know the DOM to manipulate HTML
• Design using CSS

 We found it much easier to structure and debug Java
code (than javascript code)

• We created templates making it easy to work with HTML
• Created a Java to JSON binding library

Monday, October 5, 2009

33

Questions?

Monday, October 5, 2009

