
Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Typical Java Problems
in the Wild

Eberhard Wolff
SpringSource

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 2

SpringSource Solution

High Productivity Tools

Spring Enterprise
Groovy and Grails

SpringSource Tool Suite

Lean Powerful Runtimes

SpringSource tc Server
SpringSource dm Server

SpringSource http Server

Application Infrastructure Management

SpringSource Hyperic HQ
SpringSource Hyperic IQ

Unifying the Application Lifecycle:
from Developer to Datacenter

Run	

Manage	

Build	

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 3

About me

•  Regional Director German speaking region and
Principal Consultant

•  Author of several articles and books
•  First German Spring book
•  Speaker at national and international conferences

•  Eberhard.Wolff@springsource.com

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 4

Why this talk?

•  I do a lot of reviews
•  There are some common problems you see over and

over again

•  So: Here are 10
–  …not necessarily the most common
–  ...but certainly with severe effects

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 5

public class Service {	

 private CustomerDao customerDao;	
 private PlatformTransactionManager transactionManager;	

 public void performSomeService() {	
 TransactionStatus transactionStatus = transactionManager	
 .getTransaction(new DefaultTransactionDefinition());	
 customerDao.doSomething();	
 customerDao.doSomethingElse();	
 transactionManager.commit(transactionStatus);	
 }	

}	

#1

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 6

#1 Weak Transaction
Handling

•  What happens to the transaction if the DAO
throws an exception?

•  We might never learn...
•  ...or learn the hard way

public class Service {	

 private CustomerDao customerDao;	
 private PlatformTransactionManager transactionManager;	

 public void performSomeService() {	
 TransactionStatus transactionStatus = transactionManager	
 .getTransaction(new DefaultTransactionDefinition());	
 customerDao.doSomething();	
 customerDao.doSomethingElse();	
 transactionManager.commit(transactionStatus);	
 }	

}	

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 7

Weak Transaction Handling:
Impact

•  Hard to detect, has effects only if exception is
thrown

•  …but then it can lead to wired behavior and data loss
etc.

•  That is why you are using transactions in the first
place

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 8

Solution

•  Declarative transactions

public class Service {	

 private CustomerDao customerDao;	

 @Transactional	
 public void performSomeService() {	
 customerDao.doSomething();	
 customerDao.doSomethingElse();	
 }	

}	

•  Exception is caught, transaction is rolled back (if

it is a RuntimeException)
•  Exception handling can be customized

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 9

A different solution…

•  Allows for multiple transactions in one method
•  More code – more control
•  Rather seldom really needed

public void performSomeService() {	
 TransactionTemplate template = new TransactionTemplate(
 transactionManager);	
 template.execute(new TransactionCallback() {	

 public Object doInTransaction(TransactionStatus status) {	
 customerDao.doSomething();	
 customerDao.doSomethingElse();	
 return null;	
 }	

 });	
}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 10

#2 Exception Design

•  Get all the details from a system exception!
•  Each layer must only use its own exceptions!
•  Exceptions have to be checked – then they must be

handled and the code is more secure.

•  Sounds reasonably, doesn't it?

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 11

public class OrderDao {	
 public void createOrder(Order order) throws SQLException {	
 try {	
 jdbcTemplate.update("INSERT INTO ORDER ...");	
 } catch (DataAccessException ex) {	
 throw (SQLException) ex.getCause();	
 }	
 }	
}	

public class SomeService {	
 public void performService()	
 throws ServiceException {	
 try {	
 orderDao.createOrder(new Order());	
 } catch (SQLException e) {	
 throw new ServiceException(e);	
 }	
 }	
}	 public class SomeController {	

 public void handleWebRequest() {	
 try {	
 someService.performService();	
 } catch (Exception e) {	
 e.printStackTrace();	
 }	
 }	
}

Get all the details!
Use checked
exceptions!

Service must only
throw ServiceException!
What am I supposed to do
now?
No real logging
And I don’t care about the
specific ServiceException

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 12

Impact

•  Lots of useless exception handling code
•  Lots of exception types without specific handling of

that type
•  In the end all you get is a log entry and lots of code

•  And what should the developer do?
–  All he knows "Something went wrong"
–  Does not really care and can not really handle it

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 13

Why is this commonplace?

•  Very few languages have checked exceptions (Java -
CLU and Modula-3 had similar concepts)

•  Checked exception force developers to handle an
exception – very rigid

•  How common is it that you can really handle an
exception?

•  Checked exceptions are perceived to be more secure
•  Checked exceptions are overused – also in Java APIs

•  In many cases there are even no exception concepts
in projects

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 14

Solution

•  Use more unchecked exceptions aka
RuntimeExceptions

•  Remember: A lot of languages offer only unchecked
exceptions

•  Avoid wrap-and-rethrow – it does not add value
•  Don't write too many exception classes – they often

don't add value
•  A specific exception classes is only useful if that

exception should be handled differently

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 15

public class OrderDao {	
 public void createOrder(Order order) {	
 jdbcTemplate.update("INSERT INTO ORDER ...");	
 }	
}	

Solution

public class SomeService {	
 public void performService() {	
 orderDao.createOrder(new Order());	
 }	
}	

public class SomeController {	
 public void handleWebRequest() {	
 someService.performService();	
 }	
}

Where is the
exception
handling?

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 16

AOP in one Slide

@Aspect	
public class AnAspect {	

 // do something before the method hello	
 // is executed	
 @Before("execution(void hello())")	
 public void doSomething() {	
 }	

 // in a specific class	
 // that ends in Service in any package or subpackage	
 @Before("execution(* com.springsource.MyService.hello())")	
 public void doSomethingElse2() {	
 }	

 // do something before any method in a class	
 // that ends in Service in any package or subpackage	
 @Before("execution(* *..*Service.*(..))")	
 public void doSomethingElse2() {	
 }	

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 17

Aspect for Logging

•  Logs every exception – 100% guaranteed!

@Aspect	
public class ExceptionLogging {	

 @AfterThrowing(value="execution(* *..Service*.*(..))",	
 throwing="ex")	
 public void logRuntimeException(RuntimeException ex) {	
 System.out.println(ex);	
 }	

}	

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 18

Handle only cases you really
want to handle

•  Everything else will be handled somewhere else
•  Can handle specific error conditions using catch with

specific types

public class SomeService {	
 public void performService() {	
 try {	
 orderDao.createOrder(new Order());	
 } catch (OptimisticLockingFailureException ex) {	
 orderDao.createOrder(new Order());	
 }	
 }	
}	

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 19

Generic Exception Handling

•  In the web layer
•  Handle all the (Runtime)Exceptions not handled

elsewhere

public class MyHandlerExceptionResolver	
 implements HandlerExceptionResolver {	

 public ModelAndView resolveException(
 HttpServletRequest request,	
 HttpServletResponse response, Object handler, Exception ex) {	
 return new ModelAndView("exceptionView", "exception", ex);	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 20

#3 Exception Handling

public void someMethod() {	
 try {	

 } catch (Exception ex) {	
 ex.printStackTrace();	
 }	
 try {	

 } catch (Exception ex) {	
 // should never happen	
 }	
}

Exception is not logged
just written to stdout
operations might not notice

Exception is swallowed

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 21

Impact

•  Related to #2: If you have excessive checked
exceptions this will occur more often

•  …as developers are forced to handle exceptions they
can't really handle

•  In the end you just get a message on the console
and the application continues.

•  All kinds of wired behavior
•  i.e. exception is swallowed
•  You will have a hard time finding problems in the

code
•  Potentially a huge problem – so worth its own

explanation

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 22

Solution

•  At least log exceptions
•  Rethink: Is it really OK to continue in this situation?

If not - don't handle the exception. Might be better
to let a generic handler handle it.

•  Introduce generic handling at least for
RuntimeException (AOP, web front end, etc)

•  Enforce the logging using Findbugs, PMD etc.
•  And: Improve the

exception design (#2)
public void someMethod() {	
 try {	

 } catch (Exception ex) {	
 log.error(ex);	
 }	
}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 23

#4

•  Table of
packages and
the relations
between them

•  Everything in
red is part of a
cycle

•  This is actual
code from an
Open Source
project

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 24

Dependency Graph

•  Overview

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 25

Dependency
Graph

•  Just a small part
•  Red line show

circular references

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 26

What is Architecture?

•  Architecture is the decomposition of systems in parts

•  No large or complex parts
•  No cyclic dependencies

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 27

Normal Dependencies

•  B dependes on A, i.e. it uses
classe, methods etc.

•  Changes in A impact B
•  Changes in B do not impact A

Component A

Component B

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 28

Cyclic Dependency

•  B depends on A and A on B
•  Changes in A impact B
•  Changes in B impact A
•  A and B can only be changed

as one unit
•  …even though they should be

two separate units

Component A

Component B

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 29

Bigger cyclic dependencies

Component A

Component C

Component B

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 30

#4: Architecture Mess

•  This is effectively
just one big
unstructured pile
of mud

•  Maintenance will
be hard

•  Concurrent
development will
be hard

•  Changes will have
unforeseeable
results

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 31

Solution

•  Very hard if you have this state
•  Therefore: Manage dependencies from the start
•  Otherwise you are looking at a major restructuring of

your application
•  …which might not be worth it
•  Effort for restructuring pays off by lower effort for

maintenance
•  …might take a long time to amortize

•  Throwing away + redevelopment means that you
have to migrate to a new solution -> complex and
risky

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 32

#5
public class ServiceAdaptor {	
 public void performService(OrderDTO orderDTO) {	
 logger.trace("Entering performService");	
 try {	
 if (orderDTO == null) {	
 throw new NullPointerException("order must not be null");	
 }	
 if (youAreNotAllowedToDoThis()) {	
 throw new IllegalStateException(
 "You are not allowed to call this!");	
 }	
 OrderEntity order = new OrderEntity();	
 order.setCustomer(orderDTO.getCustomer()); // ...	
 service.performService(order);	
 commandLog.add(new Command("performService",	
 service,order));	
 } finally {	
 logger.trace("Leaving performanceService");	
 }	
 }	
}	

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 33

#5: Adaptor Layer

•  Adds to a service:
–  Security
–  Tracing
–  Check for null arguments
–  Log for all commands (auditing, replay…)
–  Conversion from DTO to internal representation

•  Lots of boilerplate for each service
•  Changes to tracing etc. hard: lots of methods to

change

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 34

Solution: Tracing with AOP

•  …or use Spring's predefined TraceInterceptor,
DebugInterceptor etc.
@Aspect	
public class TraceAspect {	

 @Before("execution(* *..*Service.*(..))")	
 public void traceBegin(JoinPoint joinPoint) {	
 System.out.println("entering method "	
 + joinPoint.getSignature().getName());	
 }	

 @After("execution(* *..*Service.*(..))")	
 public void traceEnd(JoinPoint joinPoint) {	
 System.out.println("leaving method "	
 + joinPoint.getSignature().getName());	
 }	
}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 35

Solution:
Null Checks with AOP

•  Security can be handled with Spring Security or AOP
•  Command log also possible

@Aspect	
public class NullChecker {	

 @Before("execution(* *..*Service.*(..))")	
 public void checkForNull(JoinPoint joinPoint) {	
 for (Object arg : joinPoint.getArgs()) {	
 if (arg==null) {	
 throw new NullPointerException("Argument was null!");	
 } 	
 }	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 36

What is left…

•  You should probably switch to Dozer
•  http://dozer.sf.net
•  Can externalize mapping rules
•  i.e. the layer can be more or less eliminated
•  Everything (mapping, security, tracing…) is now

implemented in one place (DRY)
•  Often services just delegate to DAOs –

 same issue

public class ServiceAdaptor {	

 public void performService(OrderDTO orderDTO) { 	
 OrderEntity order = new OrderEntity();	
 order.setCustomer(orderDTO.getCustomer()); // ...	
 service.performService(order);	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 37

#6: No DAO

•  We don't need to abstract away from JPA – it's a
standard, right?

public class SomeService {	

 @PersistenceContext	
 private EntityManager entityManager;	

 public void performSomeService() {	
 List<Order> list = entityManager.	
 createQuery("select o from Order").getResultList();	
 for (Order o : list) {	
 // ...	
 if (o.shouldBeProcessed()) {	
 o.process();	
 }	
 }	
 }	
}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 38

#6: Even worse

•  Service depends on JDBC
•  …and throws SQLException
•  Persistence visible in the service layer and beyond

public class SomeServiceJdbc {	

private OrderDao someDoa;	

 public void performSomeService() throws SQLException {	
 ResultSet rs = someDoa.getOrders();	
 while (rs.next()) {	
 //...	
 }	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 39

Impact

•  Code is impossible to test without a database
•  …so no real unit tests possible

•  Service depends on persistence – cannot be ported

•  How do you add data dependent security?

•  No structure

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 40

Solution

•  Use a DAO (Data Access Object)
–  Separate persistence layer
–  Technical motivation

•  …or a Repository
–  Interface to existing objects
–  Non technical motivation: Domain Driven Design, Eric

Evans

•  Basically the same thing

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 41

Solution

•  Clear separation
•  Tests easy

public class SomeServiceDAO {	

 public void performSomeService() {	
 List<Order> list = orderDao.getAllOrders();	
 for (Order o : list) {	
 // ...	
 if (o.shouldBeProcessed()) {	
 o.process();	
 }	
 }	
 }	
}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 42

Solution: Test

public class ServiceTest {	
 @Test	
 public void testService() {	
 SomeService someService = new SomeService();	
 someService.setOrderDao(new OrderDao() {	

 public List<Order> getAllOrders() {	
 List<Order> result = new ArrayList<Order>();	
 return result;	
 }	
 });	
 someService.performSomeService();	
 Assert.assertEquals(expected, result);	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 43

#7

•  No Tests

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 44

#7 Or bad tests

•  No asserts
•  System.out:

results are
checked
manually

•  Tests commented
out: They did not
run any more
and were not
fixed

•  No mocks, so no
real Unit Tests

•  No negative
cases

public class MyUnitTest {	
 private Service service = new Service();	

 @Test	
 public void testService() {	
 Order order = new Order();	
 service.performService(order);	
 System.out.print(order.isProcessed());	
 }	

 // @Test	
 // public void testOrderCreated() {	
 // Order order = new Order();	
 // service.createOrder(order);	
 // }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 45

Impact

•  Code is not properly tested
•  Probably low quality – testable code is usually better

designed
•  Code is hard to change: How can you know the

change broke nothing?
•  Design might be bad: Testable usually mean better

quality

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 46

Solution

•  Write proper Unit Tests!
public class MyProperUnitTest {	
 private Service service = new Service();	

 @Test	
 public void testService() {	
 Order order = new Order();	
 service.performService(order);	
 Assert.assertTrue(order.isProcessed());	
 }	

 @Test(expected=IllegalArgumentException.class)	
 public void testServiceException() {	
 Order order = new BuggyOrder();	
 service.performService(order);	
 }	

}	

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Wow, that was easy!

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 48

The real problem…

•  The idea of Unit tests is over 10 years old
•  Not too many programmer actually do real unit tests
•  Even though it should greatly increased trust and

confidence in your code
•  …and make you much more relaxed and therefore

improve quality of life…

•  Original paper: Gamma, Beck: "Test Infected –
Programmers Love Writing Tests"

•  Yeah, right.

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 49

BTW

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 50

Solution

•  Educate
–  Show how to write Unit Test
–  Show how to build Mocks
–  Show aggressive Testing
–  Show Test First / Test Driven Development

•  Coach / Review
•  Integrate in automatic build
•  Later on: Add integration testing, functional testing,

FIT, Fitnesse etc.
•  …or even start with these

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 51

What does not really work

•  Measuring code coverage
–  Can be sabotaged

•  Let developers just write tests without education
–  How should they know how to test properly?
–  Test driven development is not obvious

public class MyProperUnitTest {	
 private Service service = new Service();	

 @Test	
 public void testService() {	
 Order order = new Order();	
 service.performService(order);	
 }	
}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 52

#8: Creating SQL statements

public class OrderDAO {	

 private SimpleJdbcTemplate simpleJdbcTemplate;	

 public List<Order> findOrderByCustomer(String customer) {	
 return simpleJdbcTemplate.query(
 "SELECT * FROM T_ORDER WHERE name='"	
 + customer + "'", new OrderRowMapper());	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 53

Impact

•  Performance is bad:
–  Statement is parsed every time
–  Execution plan is re created etc.

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 54

Impact

•  Even worse: SQL injection
•  Pass in a' or 't'='t'
•  Better yet: a'; DROP TABLE T_ORDER; SELECT *

FROM ANOTHER_TABLE

public class OrderDAO {	

 private SimpleJdbcTemplate simpleJdbcTemplate;	

 public List<Order> findOrderByCustomer(String customer) {	
 return simpleJdbcTemplate.query(
 "SELECT * FROM T_ORDER WHERE name='"	
 + customer + "'", new OrderRowMapper());	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 55

Solution

•  … and white list the allowed characters in name

public class OrderDAO {	

 private SimpleJdbcTemplate simpleJdbcTemplate;	

 public List<Order> findOrderByCustomer(String customer) {	
 return simpleJdbcTemplate.query(
 "SELECT * FROM T_ORDER WHERE name=?",	
 new OrderRowMapper(), customer);	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 56

#9

•  "What about Performance?"
•  "Well, we figured the response time should be 2s."
•  "How many request do you expect?"
•  "…"
•  "What kind of requests do you expect?"
•  "..."

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 57

#9

•  The software is happily in the final functional test
•  Then the performance test start
•  Performance is too bad to be accepted
•  You can hardly do anything:

–  Changes might introduce functional errors
–  Too late for bigger changes anyway

•  The results might be wrong if the performance test is
on different hardware than production.

•  You can't test on production hardware: Too
expensive.

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 58

Impact

•  You have to get bigger hardware
–  Prerequisite: The software is scalable

•  Worse: You can't go into production

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 59

Solution

•  Get information about the number of requests,
expected types of requests, acceptable response
times

•  Pro active performance management:
–  Estimate the performance before implementation
–  …by estimating the slow operations (access to other

systems, to the database etc)
–  Measure performance of these operation in production

•  Practice performance measurements and
optimizations before performance test

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 60

#10

public class SomeService {	

private Map cache = new HashMap();	
private Customer customer;	

 public Order performService(int i) { 	
 if (cache.containsKey(i)) {	
 return cache.get(i);	
 }	
 Order result;	
 customer = null;	
 cache.put(i, result);	
 return result;	
 }	

}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 61

#10 Multiple threads, memory
leaks
public class SomeService {	

 private Map<Integer,Order> cache =	
 new HashMap<Integer, Order>();	
 private Customer customer;	

 public Order performService(int i) { 	
 if (cache.containsKey(i)) {	
 return (Ordercache.get(i);	
 }	
 Order result;	
 customer = null;	
 ...	
 cache.put(i, result);	
 return result;	
 }	

}

The cache is filled –
is it ever emptied?

HashMap is not
threadsafe

customer is an
instance variable –
multi threading will
be a problem

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 62

Impact

•  System working in small tests
•  In particular Unit tests work

•  But production fails
•  …probably hard to analyze / fix
•  Almost only by code reviews
•  …or extensive debugging using thread dumps

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 63

Solution

•  Use WeakHashMap to
avoid memory leaks

•  Synchronize
•  Prefer local variables
•  Usually services can

store most things in
local variables

public class SomeServiceSolution {	

 private Map<Integer, Order> cache =	
 new WeakHashMap<Integer, Order>();	

 public Order performService(int i) {	
 synchronized (cache) {	
 if (cache.containsKey(i)) { 	
 return cache.get(i);	
 }	
 }	
 Order result = null;	
 Customer customer = null;	
 synchronized (cache) {	
 cache.put(i, result);	
 }	
 return result;	
 }	
}

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 64

Solution

•  Also consider ConcurrentHashMap
•  or http://sourceforge.net/projects/high-scale-lib

Copyright 2009 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 65

Sum Up

•  #1 Weak Transaction
Handling

•  #2 Exception Design
•  #3 Exception Handling
•  #4 Architecture Mess
•  #5 Adaptor Layer
•  #6 No DAO
•  #7 No or bad tests

•  #8 Creating SQL
queries using String
concatenation

•  #9 No performance
management

•  #10 Multiple threads /
memory leaks

