
Kodewerk
Java Performance Servicestm

The War on Latency
Reducing Dead Time

Kirk Pepperdine
Principle

Kodewerk Ltd.

Me

Work as a performance tuning freelancer
Nominated Sun Java Champion
www.kodewerk.com
kirk.blog-city.com
www.javaperformancetuning.com
Other stuff (google if you care to)

Java Performance Tuning
Chania Crete
May 18-21

Kodewerk
Java Performance Servicestm

The resemblance of any opinion,
recommendation or comment made

during this presentation to performance
tuning advice is merely coincidental

Public Service Announcement

Latency Affects Abandonment

Shopzilla, 5 second improvement
resulted in

25% increase in page view
10% increase in revenue
50% reduction in hardware

Amazon reports every 100ms costs 1% in
sales

Defining Latency

Time that elapses between a stimulus
and the response to it

data latency (end user response time)
i/o latency (disk and network)
cache latency
synchronization

Goal: find and minimize latency

goal is to find and eliminate dead time or time spent waiting for
something to happen

The Box

Conceptional model of a
system

Visualize components of
the system

Visualize interactions
between components

Understand how each
layer contributes latency

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

when components are good citizens, we’ll experience good
performance
when component are not good citizens, we’ll experience poor
performance
Look at monitoring data and ask, what does it mean in the box
use that information to help guide our search for latency

Latency and The Box

Defined by Usage Patterns

drives load on the
system

Data latency shows up here

response time

Key measure of system
performance

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

All performance decisions are guided by the user experience
starting trigger and ending condition

Latency and The Box

Bundle of non-sharable
resources

Defines finite capacity of the
system

compute speeds

data capacities

data transfer speeds

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

We can’t go faster than our hardware
nonsharable = Queuing
Everything else will prevent us from going fas

Latency and The Box

OS

hardware management
and provisioning

JVM

transform instructions
into machine code

memory management

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

memory management is the important item
thread scheduling, interrupt handling, interacting with devices

Latency and The Box

Translates user intent into a
sequence of instructions

Protects non-sharable soft
resources

lock induced latency

Interactions with external
systems

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

All performance decisions are guided by the user experience
External systems may show up as a kernel problem or as parked
threads
thread pools as this level

Finding Latency

Trigger

actors experience poor
response time

Action

find the dominating
consumer of the CPU

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

All performance decisions are guided by the user experience

Dominating Consumer

Application

JVM

OS

No dominating consumer

Monitor cpu (both user and
system) and GC activity

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

All performance decisions are guided by the user experience

Applicaton as Dominator

CPU user time is high

Efficient Java memory
management

Object creation rates are
reasonable

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

1.2G/sec on this machine

Localizing Latency

JVM dominates when

GC throughput is low

less than 90%

high full to partial GC
ratio

object creation rates are
high

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

1.2 gigs is about all this machine will tolerate

Localizing Latency

OS dominates when system
cpu

exceeds 10%

is 50% or greater than
that of user cpu time

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

1.2 gigs is about all this machine will tolerate

Localizing Latency

No dominating consumer
means threads are parked
waiting for something

calls to external systems

locks

thread pool starvation

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

1.2 gigs is about all this machine will tolerate

Diagnosing Latency

Application - execution
profile

JVM

gc tuning

memory profiling

OS - thread dumps and/or
execution profiling

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

1.2 gigs is about all this machine will tolerate

Diagnosing Latency

No dominating consumer

what is keeping threads
out of the CPU?

Actors

Application

JVM/OS

Hardware

Usage patterns

Locks, external systems

Memory, Hardware
management

CPU, Memory, Disk IO,
Network

debuggable question

Big Gains First

How can we remove 100ms from
500ms time budget

100ms servlet

150ms business logic

250ms EJB

500ms DB

focus on layer with largest contribution

Time Budgets

Build a layer by layer,
component by component
time budget

5-4 DB response time

6-3 Apps view of DB
response time

etc.....

Client

Application Server

DataBase

1

2

3

4 5

6

7

8

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

Common Sources of Latency

Java Memory Management
Network I/O (JDBC)
Disk I/O (Logging)
Shared data structures

Java Memory Management

Java heap allocated out of C heap
one large contiguous piece of RAM

Objects are allocated out of Java heap
Java heap fills up triggering a garbage
collection cycle

mark and sweep

Mark & Sweep GC

Traverse OOP table
clear mark bit in each
object

GC

Root

GC

Root

OOP Table

compaction?

Mark & Sweep GC

From GC root mark
all reachable objects

GC

Root

OOP Table

compaction?

Mark & Sweep GC

Traverse OOP table
releasing all unmarked
objects.

GC

Root

OOP Table

compaction?

GC Optimizations

Parallel GC (throughput)
Concurrent GC (pause time)
Incremental
Weak generational hypothesis

generational GC
G1GC

Generation Spaces

Eden S1 TenuredS2 Perm

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

Generational Spaces

Eden S1 TenuredS2 Perm

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

Generational Spaces

Eden S1 TenuredS2 Perm

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

Generational Spaces

Eden S1 TenuredS2 Perm

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

Generational Spaces

Eden S1 TenuredS2 Perm

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

Generation Spaces

Eden S1 TenuredS2 Perm

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

G1GC

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

G1GC

dominating consumer tells us the nature of the problem
time budgets tell us where the problem is

Talking Points

Young generational guarantee
Fragmentation

compaction phase
Sizing to avoid disruptive pauses

pause time goals
throughput goals

Talking Points

Space efficiency
zombies

Completeness
floating garbage

Object nepotism
tenured garbage

Bad Stuff

Unintentional object retention
Object with no semantic meaning to
the application is never released

Loitering objects
objects that will go away long after
you want them to

Local caches

Things That Help

Narrow scope of all variables
fits to weak generational hypothesis

Don’t swap during GC
lock VM into memory

Improve object locality
use large pages

Benchmarking GC

Mix
Pressure

Parallel
Parallel

Parallel
CMS G1

old 7775 11138 32800

young 1406 1302 3400

object
creation 7275 7195 20835

I/O

Interactions with devices that are 1000s
of orders of magnitudes slower than
local interactions
Threads suspended waiting for I/O

no dominating consumer
Thrash on I/O

OS becomes the dominating consumer

Disk I/O

Mechanical device optimized for chunky
sized sequential reads
Use buffered input/output
Reduce load
Compress data (trade CPU for disk)
Stripe to increase throughput

Unix Kernel Counters

procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 2 1 207740 98476 81344 180972 0 0 2496 0 900 2883 4 12 57 27
 0 1 207740 96448 83304 180984 0 0 1968 328 810 2559 8 9 83 0
 0 1 207740 94404 85348 180984 0 0 2044 0 829 2879 9 6 78 7
 0 1 207740 92576 87176 180984 0 0 1828 0 689 2088 3 9 78 10
 2 0 207740 91300 88452 180984 0 0 1276 0 565 2182 7 6 83 4
 3 1 207740 90124 89628 180984 0 0 1176 0 551 2219 2 7 91 0
 4 2 207740 89240 90512 180984 0 0 880 520 443 907 22 10 67 0
 5 3 207740 88056 91680 180984 0 0 1168 0 628 1248 12 11 77 0
 4 2 207740 86852 92880 180984 0 0 1200 0 654 1505 6 7 87 0
 6 1 207740 85736 93996 180984 0 0 1116 0 526 1512 5 10 85 0
 0 1 207740 84844 94888 180984 0 0 892 0 438 1556 6 4 90 0

Network

Responsible for vast majority of IPC
Caching to avoid
Data set size matches network frame size
Validate hardware configurations
Diagnose with thread dump

Unix Kernel Counters

 procs memory page faults cpu
 r b w avm free re at pi po fr de sr in sy cs us sy id
 6 5 0 6788303 15995602 429 105 0 0 0 0 0 43506 223636 35870 12 11 76
 11 5 0 6798760 15996291 484 105 0 0 0 0 0 41273 224496 39269 11 13 76
 11 5 0 6798760 15995053 434 102 0 0 0 0 0 41525 229932 40548 13 12 75
 7 5 0 6734414 15993987 469 129 0 0 0 0 0 42806 238258 41581 12 12 75
 7 5 0 6734414 15984722 984 134 0 0 0 0 0 41240 255757 42089 18 16 66
 8 5 0 6753286 15986598 1117 190 0 0 0 0 0 41852 289565 42430 17 15 68
 8 5 0 6753286 15993458 638 127 0 0 0 0 0 41050 246921 41123 12 12 75
 10 6 0 6694867 15993275 442 112 0 0 0 0 0 41117 234697 41337 12 12 77
 10 6 0 6694867 15992895 417 116 0 0 0 0 0 39506 226170 40361 12 12 75
 9 5 0 6686343 15992543 420 124 0 0 0 0 0 39809 227487 40447 12 12 76
 9 5 0 6686343 15991552 476 112 0 0 0 0 0 41320 233457 41181 12 12 76
 11 5 0 6669621 15991648 426 104 0 0 0 0 0 39712 213137 36657 10 11 78
 11 5 0 6669621 15992502 406 102 0 0 0 0 0 41535 212687 32910 9 11 80
 7 5 0 6699466 15992379 393 102 0 0 0 0 0 39843 195238 29802 10 9 80
 7 5 0 6699466 15992379 340 97 0 0 0 0 0 39377 186153 27820 9 9 81

JDBC

Monitor JDBC calls
frequency and duration

Reconcile response times with those
reported by DB
Many tools (commercial and OSS)

P6Spy

Sourceforge (www.p6spy.org)
JDBC proxy

logs JDBC traffic
Visualized with IronEye

JDBC Layer

P6Spy Driver

Regular Driver

Database

P6Spy

Shared Data Structures

Data mutated by multiple threads must
be synchronized (locked)
Drive up rates of context switching

increase pressure on thread scheduler
not cover the costs of the context
switch

OS will be the dominating consumer

Java locks will push the problem into application CPU burn
can make it harder to find

Finding Lock Contention

Thread and lock profilers
many vendor and OSS
implementations

Thread dumps
jstack (or visualvm)
TDA (Thread dump Analysis)

Quick Demo
& Questions

1) GC Log viewing, followed by allocation stack traces
2) Thread dump followed by TDA

