
Java Enterprise Application
Standards and Why the
Industry Moved to

Lightweight Open Source

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Lightweight Open Source

Rod Johnson

CEO, SpringSource

Topic

• Not a talk about particular technologies

• An attempt to explain how bad ideas can
flourish (with examples), and how to
avoid repeating the mistakes of history

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 2

avoid repeating the mistakes of history

The Long-term Narrative

• Two major factors help us to
understand the history of
enterprise Java

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 3

–Developer empowerment

–Economic fluctuations

Java started out simple

• Java started off as a simple
language

–C++ --

• Even today, Java is not particularly

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 4

• Even today, Java is not particularly
complex

Where did it all go wrong?

• Excessive complexity was
introduced along the way
– “Enterprise” Java lost touch with its roots

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 5

The growth of the Complexity
Industry

• The “E” word

– “Enterprise”

• Ex CORBA architects who wanted to have any
shot at some of their fetishes

• Embrace by huge companies (software vendors

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 6

• Embrace by huge companies (software vendors
and SIs) who helped to define platform

• Resume padding among developers and
architects

• “No pain no gain” fallacy

• Economic: Irrational exuberance

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 7

A BRIEF HISTORY OF
J(2)EE

The Three ages of Enterprise
Java

Before
J2EE

The post
Java EE

era

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 8

The glory
days of
J2EE

1. Before J2EE

• Mid 1990s

– Java gradually moves to the server side

• Largely unregulated

• Many competing products in different areas

– NetDynamics

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 9

– NetDynamics

– TopLink

– Silverstream

– Persistence PowerTier

– Apple WebObjects

– ...

Before J2EE…

• Good and Bad
– Innovation and choice of approaches

–Applications needed to use in-house
frameworks, but many companies got

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 10

frameworks, but many companies got
good results based on Servlet API

–Fragmented server-side market

–Real danger of vendor lock-in

–Many solutions very expensive
• No impact from open source

2. The Glory Days of J2EE

• 1999-2003

– The JCP becomes dominant in the space

• Great winnowing of alternative
approaches

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 11

approaches

– TopLink and other “non-standard”
technologies cannot compete with J2EE
standards

• ORM versus EJB entity beans

• Velocity vs JSP

• WebObjects vs J2EE web tier

The Glory Days of J2EE

Good

• A market is created

• Vendor lock-in is
reduced, but not
eliminated

Bad

• Increasing thought
control strangles
innovation

• Flaws in the model

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 12

eliminated • Flaws in the model
take years to be
resolved

The Glory Days of J2EE

• Enterprise Java gains a reputation for
complexity

• Many projects fail due to flaws in the
platform

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 13

platform

• Greatest offender is the programming
model, based on EJB

The Glory Days of J2EE/aka
The Dark Ages

• Some horrible technologies and
fundamental flaws in the platform

– Idea that all business objects (EJBs) should
be distributed

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 14

– Naïve ORM solution (CMP entity beans)

– Grossly excessive complexity across the
platform

The Decline of J2EE

• 2003-

• Move away from
traditional application
server towards
lighter-weight

• Proportion of enterprise Java
users using Tomcat

40

50

60

70

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 15

lighter-weight
solutions such as
Tomcat

– Tomcat now clear
leader in enterprise
Java deployments

0

10

20

30

40

WAS JBoss WLS Tomcat

Springframework.org
BZ Research

3. The Post J2EE Era

• JCP specifications now just one input

• More grass roots innovation

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 16

Major Driver of Change: The
rise of Open Source

• Fewer and fewer organizations develop
enterprise Java applications without
using open source

– Those that do face increasing competitive

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 17

– Those that do face increasing competitive
disadvantage

• Numerous open source projects help to
shape the future

– Eclipse

– Hibernate

– Spring

– AspectJ

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 18

SOME OF THE TRAPS THAT
PRODUCED THE
PROBLEMS OF “OLD J2EE”

Traps/Ideas that Created
Complexity

1. Design by committee is desirable

2. Everything has to be standardized

3. Tools can make excessive complexity
acceptable

4. Lack of openness to other platforms, sources

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 19

4. Lack of openness to other platforms, sources
of ideas

5. Developers are stupid and must be controlled

6. Complex solutions are better

Trap: Design by Committee

• You’ve heard of the Cathedral and
Bazaar as sources of software

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 20

The Commissar

• Java has its own somewhat
unique model

– The Commissar

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 21

• In this model, the politburo
knows what’s best for the
proletariat (you)

The Commissar Knows Best

• Essentially, design by
committee

• JCP expert groups talk
largely in private

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 22

largely in private

• Typically composed of
software vendors

• Relatively slow pace of
change, like Soviet 5
year plans

Trap: Too Much
Standardization

• In the Java world we have an unhealthy
obsession with standards

• Desire to standardize everything

• Failure to critically evaluate standard

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 23

• Failure to critically evaluate standard
technologies

• Need to get it just right

Why Standards are Needed

• Standards can create markets

• Standards can provide a base on which
competing open source and commercial
alternatives can flourish

– JTA

– Servlet API

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 24

– Servlet API

– JMS

• Standards can protect customers from lock in
to a proprietary technology

• To ensure interoperability

– Web Services

– IIOP

Where Standards Don’t Work

Kowtowing to the god of standards is, I believe,
doing great damage to our industry, or craft, and our
science. It turns technical discussions into political
debates. It misunderstands the role that standards
have played in the past. Worst of all, it is leading us

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 25

have played in the past. Worst of all, it is leading us
down absurd technological paths in the quest to

follow standards which have never been implemented
and aren’t the right thing for the problems at hand.

Jim Waldo, Sun Distinguished Engineer

Where Standards Don’t Work

• CORBA history (1990s)

– Death by committee

– Attempts to innovate by committee
(distributed persistent objects)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 26

• When they’re too slow

• When they’re divorced from reality

– Ivory castle

• When they are about politics, not
technology

Case study in failure

• CMP entity beans

• Grew out of CORBA

• No implementations when specification
was released

• Designed by smart people with little

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 27

• Designed by smart people with little
domain knowledge

• Ignored successful products like TopLink

• Inefficient, barely useable specifications

• Problems were available to anyone who
wrote Hello World

The Standards Check List

1. Will the pace of change and innovation required
by met in a standards process cycle

2. Do we benefit from competing implementations?

3. Does this affect wire protocols (in which standards
are probably outside Java)

4. Is there an entrenched open source solution, in

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 28

4. Is there an entrenched open source solution, in
which case competition may not occur?

5. Is the field mature and well understood

1. Has the proposal been tested in the market?

6. Is the standards committee representative of the
users of the technology?

Key Point: Things Need to
Become Faster

• Competition and experimentation needs
to occur rapidly

• Technology change and the increasing
pace of business leaves 2-3 years

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 29

pace of business leaves 2-3 years
committee-driven cycles looking less
and less relevant

Politics: Does the Standard
Lock Out Newcomers?

• When standards become too complex,
like J2EE, they effectively lock out new
entrants and benefit existing
franchisees, not consumers

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 30

Politics: Does the Standard
Meet a Real Need?

Quite frankly, this is the

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 31

Quite frankly, this is the
single dumbest attempt at
one-sided "standardization"
of anti-REST architecture
that I have ever seen.

Roy Fielding, creator, REST

Trap: Lack of openness to
other ideas

• Java specifications have too often ignored prior
art

– TopLink and real ORM (CMP)

– java.util.logging

– EJB 3.0

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 32

– EJB 3.0

– Ongoing reinvention of AOP without any real domain
experts involved

• May be improving, but has long been a
challenge

Failed reinvention in the JCP

• History of failure when this has not
happened

JCP technology Ignored existing
technology

Negative consequences

Entity beans TopLink and all other
ORM solutions

•Two complete failures (EJB 1.x and 2.x)
•ORM in Java loses at least 6 years
•Billions of dollars of wasted development
effort from customers

Commons Log4J Added complexity of pointless abstraction

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 33

Commons
Logging

Log4J Added complexity of pointless abstraction
layers such as Commons Logging

EJB (DI) Spring, PicoContainer,
Hivemind

Limited DI functionality in EJB 3 specification
misses opportunity to match best practice

EJB3
(interception)

Spring, AOP Alliance,
AspectJ, AspectWerkz

Lack of knowledge of AOP in the expert group
produces fragile, clunky API missing central
AOP concepts

JSR 277
(modularization)

OSGi •Ignoring input and experience from OSGi
•May split JCP as many organizations are
deeply committed to OSGi

Trap: The Myth of the Code
Monkey

• Belief that developers are dumb

• Primary goal is to prevent them making
decisions

• Sadly, far from unique to Java

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 34

• Sadly, far from unique to Java

Problems due to the Myth of
the Code Monkey

• Belief that persists in the EJB
specification that developers are
incapable of using language-level
concurrency features

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 35

• Aim of many old in-house frameworks to
provide a straightjacket for developers

Primate Programming Inc.

• Humans and higher primates share
approximately 97% of their DNA in common.

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 36

approximately 97% of their DNA in common.
Recent research in primate programming
suggests computing
is a task that most higher primates can easily
perform. Visual Basic 6.0™ was
the preferred IDE for the majority
of experiment primate subjects."

Primate Programming Inc.

• Great apes (hominids) do not have tails, while
monkeys do. Research indicates that great

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 37

monkeys do. Research indicates that great
apes are very productive in the areas of
software maintenance and report writing, while
most monkeys will struggle. Monkeys however
are great at software testing. So the rule of
thumb is, if you don’t have a tail, you can
probably program.

Trap: Complexity is Good

• Natural tendency to believe in the old
adage, no pain no gain

• Leads to an Emperor’s New Clothes
syndrome

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 38

syndrome

– EJB most obvious offender

• Causes people to accept the complexity
resulting from the other factors

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 39

HOW DID THINGS BEGIN
TO CHANGE?

It’s the economy, stupid

Money to spend gets
spent

• Economic exuberance

• Who cares about
efficiency?

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 40

Economic downturns tend to
reduce complexity

• Complexity is an expensive luxury

• License cost of complex proprietary
products is just one factor

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 41

products is just one factor

• Ongoing complexity throughout the
software lifecycle is even more
problematic

Hemline Theory

• American economist
George Taylor (1926)

• “Hemline Index”

• Theory that lower

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 42

• Theory that lower
hemlines mean a falling
market

• Market confidence,
availability of money
changes peoples’
behaviour

A short history of enterprise
Java complexity

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 43

Developer empowerment: A
key part of the solution

• We’ve seen more and more developer
empowerment

• Why?

– Because the previous failure was so severe

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 44

– Because the previous failure was so severe

• People got promoted for adopting open source

– Because things change quicker than in the
past, and management need to rely on
developers more

Developers have enormous
power today

• We live in great times for developers

• Ability to make a difference in a deep
way

– Much choice developers can make

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 45

– Much choice developers can make

• Compare with the mainframe days

– Open source allows participation

Innovation from the community
has made decisive change

• Spring

• Hibernate

• Ruby on Rails

• Django

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 46

• Django

• Grails

Rise of agile ways of working

• Another developer-led initiative

• Helped to expose the flaws of the
original J2EE programming model

– Untestable code

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 47

– Untestable code

– Slow test cycles

– Lack of immediate feedback

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 48

WHAT HAPPENS FROM
HERE?

What happens from here?

• Unlikely we will go backwards

• Developer empowerment is not going to
change – May accelerate with Cloud

• Java productivity needs to improve

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 49

• Java productivity needs to improve
further due to external challengers

• Complex portfolio solutions out of favor

– Push toward effective point solutions

• Likely to see the traditional application
server fade away

Escaping the traps?

Yesterday’s Traps
• Design by committee is a good

idea

• Everything has to be standardized

• Tools can make excessive
complexity acceptable

Today
• Innovation that gets adopted

comes largely from open source

• Solutions are simpler, even as
tools are better

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 50

complexity acceptable

• Lack of openness to other
platforms, sources of ideas

• Developers are stupid and must
be controlled

• Complex solutions are better

• “I need a solution that enables
my enterprise SOA/XYZ strategy”

tools are better

• Responsiveness to other
platforms (Grails etc.)

• Successful frameworks treat
developers with respect (Spring)

• Shift away from WebSphere & co
to simpler solutions

• SOA buzzword is less hyped

The appropriate role of the
JCP

• The JCP is unlikely to produce
innovation but should focus on what it
can succeed at

– Creating a market where innovators can

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 51

– Creating a market where innovators can
compete above fundamental stanards

• Innovation by committee is a bad idea,
and has traditionally produced poor
results

The standardization cycle

Breakdown of standards
process

Breakdown of standards
process

No standardsNo standards

Lack of innovationLack of innovation

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 52

StandardizationStandardization

Create
coherent
market

Create
coherent
market

Lock out new entrants /

Produce lowest common
denominator

Lock out new entrants /

Produce lowest common
denominator

Summary

• Java is in a far healthier state than for
much of its history

• Developer empowerment is the
dominant trend of the last few years

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 53

dominant trend of the last few years

• Present economic troubles have at least
some positive results in technology

Call to action

• The key person who can make a
difference is you

• Developers have brains and should think
for themselves

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 54

for themselves

• Developers are highly capable of seeing
through flawed solutions

– Should not accept the Emperor’s New
Clothes again

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 55

Q&A

