
Fast JavaScript in V8
Erik Corry
Google

The V8 JavaScript Engine

A from-scratch reimplementation of the ECMAScript 3 language
An Open Source project from Google, primarily developed here in Århus
A real JavaScript “VM” with a JIT compiler, accurate garbage collection etc.
Embedded in Google Chrome, Android 2.2, node.js, HP WebOS
See more at http://code.google.com/p/v8/
Kickstarted the JavaScript performance wars, resulting in better JS performance on all browsers
My passion: “A rising tide lifts all boats”

Handout note: If you found the Rx, Erjang or akka talks interesting then check out node.js.

...well almost all boats.

Image credit: Jim Champion http://www.flickr.com/photos/treehouse1977/967186270/ Attribution-ShareAlike 2.0 Generic

Never use with

function with_with() {
 with(Math) {
 var sum = 0;
 for (var i = 0; i < 10000; i++) {
 sum += i;
 }
 return floor(sum); // Note this is outside the loop!
 }
}

with_with();

Never use with part 2

http://jsperf.com/with-ruins-everything/2

With Ruins Everything

Revision 2 of this test case created by Erik Corry on 24th August 2010

Info

Shows how using with destroys performance of apparently unrelated variables.

Ready to run tests

Testing in Chrome 6.0.472.63 on Intel Mac OS X 10.5.8

Test

No with

function no_with() {

 var sum = 0;

 for (var i = 0; i < 10000; i++) {

 sum += i;

 }

 return Math.floor(sum);

}

no_with();

eval can be like with

(function() {
 var sum;

 function bench() {
 sum = 0;
 for (var i = -1000; i < 1000; i++) {
 sum += i;
 }
 sum += eval("42");
 return sum;
 }

 bench();
})();

eval can be like with part 2

(function() {
 var sum;

 function bench() {
 sum = 0;
 for (var i = -1000; i < 1000; i++) {
 sum += i; // which sum?
 }
 sum += eval("var sum;");
 return sum;
 }

 bench();
})();

eval can be like with part 3

Solution: use eval.call instead.

eval.call(null, "42");
See http://jsperf.com/eval-done-right

Eval done right

Test case created by Erik Corry 1 week ago

Info

If you have to use eval (and JSON.parse isn't good enough) then there's a right and a wrong way to do it.

Ready to run tests

Testing in Chrome 6.0.472.63 on Intel Mac OS X 10.5.8

Test

(function() {

 var sum;

 function bench() {

 sum = 0;

It should be slow to use parseInt

Instead of Math.floor people use parseInt
This converts your number to a string
Then it parses it as an integer
When it gets to a decimal point it stops parsing
That's slow, but...

But parseInt has friends

... it's fast.
Dean Edwards' JavaScript packer uses parseInt
SunSpider uses packer
So everyone is fast at parseInt on floating point numbers

We are not SunSpider fans

... but we are fast at it.

I actually do love jsnes

What parseInt used to look like

// ECMA-262 - 15.1.2.2
function GlobalParseInt(string, radix) {
 if (IS_UNDEFINED(radix)) {
 radix = 0;
 } else {
 radix = TO_INT32(radix);

 if (!(radix == 0 || (2 <= radix && radix <= 36))) return $NaN;
 }
 string = TO_STRING(string);
 return %StringParseInt(string, radix);
}

What parseInt looks like now

// ECMA-262 - 15.1.2.2
function GlobalParseInt(string, radix) {
 if (IS_UNDEFINED(radix)) {
 if (%_IsSmi(string)) return string;
 if (IS_NUMBER(string) && ((0.01 < string && string < 1e9) || (-1e9 < string && string < -0.01))) {
 // Truncate number.
 return string | 0;
 }
 radix = 0;
 } else {
 radix = TO_INT32(radix);
 if (!(radix == 0 || (2 <= radix && radix <= 36))) return $NaN;
 }
 string = TO_STRING_INLINE(string);
 if (%_HasCachedArrayIndex(string) && (radix == 0 || radix == 10)) {
 return %_GetCachedArrayIndex(string);
 }
 return %StringParseInt(string, radix);
}

Keeping method calls fast

Calling methods is a fundamental operation in object-oriented programs
In JavaScript, methods are usually properties on the prototype of an object
It's not a huge effect, but V8 and Safari like for the number of arguments to match up at the
call site and the function definition.
There are a lot of method calls in the V8 benchmark suite

Goldilocks method calls

http://jsperf.com/arguments-adaptor

Arguments Adaptor

Test case created by Erik Corry 5 days ago and last updated 4 days ago

Info

What are the performance implications of calling a function with the wrong number of arguments?

inlining since that is not what we want to measure here.

Ready to run tests

Testing in Chrome 6.0.472.63 on Intel Mac OS X 10.5.8

Test

Too many arguments

function FibberTooMany() {}

FibberTooMany.prototype.fib = function(x) {

 if (x < 3) return 1;

 return this.fib(x - 2, 0) + this.fib(x - 1

}

Keeping property accesses fast

Accessing member variables on objects is another fundamental operation in object-oriented
programs
This applies to member variables on this too
In JavaScript member variables are properties on an object
Objects are rather like string-keyed hash maps
So how does V8 represent these objects?

Maps in V8

Each object in V8 has a map that describes its layout
Many objects share a map

function Point(x, y) {
 this.x = x;
 this.y = y;
}
var point = new Point(42, 3.14);

Map Transitions in V8

If you add a property to an object it transitions to a new map

point.color = "red";

Out-of-object properties

point.z = 2.71;

Load of an in-object property

return this.x;

17 8b4508 mov eax,[ebp+0x8] ;load this from stack
20 a801 test al,0x1 ;is this an object
22 0f841b000000 jz 55 (0xf54905f7)
28 8178ff21a049f5 cmp [eax+0xff],0xf549a021 ;check map
35 0f850e000000 jnz 55 (0xf54905f7)
41 8b98feffff7f mov ebx,[eax+0x7ffffffe] ;load in-object
47 89d8 mov eax,ebx ;return in eax
49 8be5 mov esp,ebp ;js return
51 5d pop ebp
52 c20400 ret 0x4
; out-of-line code
55 b97d514af5 mov ecx,0xf54a517d ;"x"
60 e89ff8feff call LoadIC_Initialize ;load
65 a9dbffffff test eax,0xffffffdb ;offset
70 89c3 mov ebx,eax ;restore regs
72 8b7df8 mov edi,[ebp+0xf8]
75 8b4508 mov eax,[ebp+0x8]
78 ebdf jmp 47 (0xf54905ef) ;to fast case

Making properties slow: Out of object

 function OutOfObject() {
 this.initialize();
 }

 OutOfObject.prototype.initialize = function() {
 this.foo = null;
 this.bar = null;
 this.color = "transparent";
 this.that = "bla";
 this.the_other = "bla";
 this.x = 0;
 this.y = 0;
 }

Making properties slow: delete

 function Deleted() {
 this.foo = null;
 this.bar = null;

 this.color = "transparent";
 this.that = "bla";
 this.the_other = "bla";
 this.x = 0;
 this.y = 0;
 delete this.foo;
 }

Making properties slow: ECMAScript 5

This can probably be improved
But right now using these ECMAScript 5 functions will slow down property access:

Object.freeze();
Object.seal();
Object.preventExtensions()

Compare ways to slow down JS

http://jsperf.com/making-property-access-slow

Making property access slow

Test case created by Erik Corry 1 week ago

Info

Investigates some ways to accidentally slow down property access.

Preparation code

<script>

 function InObject() {

 this.foo = null;

 this.bar = null;

 this.color = "transparent";

 this.that = "bla";

 this.the_other = "bla";

 this.x = 0;

 this.y = 0;

 }

 function OutOfObject() {

The silly one: indexOf

Some like to use indexOf to test whether a string starts with something.

if (hayStack.indexOf("fish") == 0) {

You can use lastIndexOf similarly
Also applies to arrays
What if the string you are looking at is big?
For indexOf use /^fish/
For lastIndexOf I'd like to suggest /fish$/
Unfortunately that's not optimized...

Instead of lastIndexOf

 String.prototype.EndsWith = function(needle) {
 var len = needle.length;
 if (len > this.length) return false;
 var offset = this.length - len;
 for (var i = 0; i < len; i++) {
 if (needle.charCodeAt(i) !==
 this.charCodeAt(offset + i)) return false;
 }
 return true;
 }

http://jsperf.com/careful-with-that-indexof-eugene

How to iterate over an array

The best way is for (var i = 0; i < data.length; i++) {
You can cache the length in a variable, but even on the empty loop it's only worth <20%
This is 20 times slower: for (var i in data) {
It also breaks down if someone adds an enumerable property to Array.prototype
If you have a sparse array then you have to use for in. Perhaps one day forEach will
optimize for this
Even with the function call overhead array.forEach() is still 4 times faster than for
in
http://jsperf.com/js-forin-vs-classicfor/2

The Dreaded Miscellaneous

DOM operations are slow. Cache the results.
Local variables in functions are faster and cleaner than variables on the window/global object
Regular expressions can do catastrophic backtracking
Premature optimization is the root of all evil.
There's a profiler built into Google Chrome.

Summary

O(n) ! O(1) — Avoid using indexOf to test what a string starts with
Factor 200 — Avoid with
Factor 20 — Use for loop instead of for in on arrays.
Factor 6 — Use eval.call(null, arg)
Factor 3 — Use x.foo = void 0 instead of delete
Factor 3 (right now) — Avoid Object.freeze etc.
Factor 2 — Keep properties in-object
20% — Call functions with the right number of arguments
20% — Cache array.length in an empty loop

