

Predictably Random

James Roper

Atlassian

The Perils of Psuedorandom numbers in Web Security

Opinions on PRNG

the problem … was that it was predictable due
to the seeding either not happening or the

seed value being recoverable … So just using a
better seed for srand() should help there, as I

understand. Or am I missing something?

Comment from a Firefox developer

Opinions on PRNG

The important thing is that we choose a seed
that is sufficiently hard to guess.

Myself, 2 years ago

Maybe this is you

● Exploiting random number generators is
doable, but hard

● Securely generating random numbers is all
about choosing a good seed

● There are simple techniques that can be
used to choose a good seed

● You need a lot of maths to know anything
about random number generators

You will learn

● How easy it is to exploit applications that
use random number generators badly

● A secure seed is not enough to generate
secure random numbers

● Choosing a secure seed is difficult
● How to securely generate random numbers

Maths

● This presentation will have very little maths
– Multiplication
– Addition
– Bit masking
– Bit shifting
– Some binary/hex

Cryptography

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Web Developers

● They don't:
– Understand cryptography
– Want to understand cryptography
– Need to understand cryptography

● Or do they?

Tokens

● Small amount of
random data

● Used for
identification

● Must be hard to
guess

Tokens on the web
● Session tracking
● RPC authentication
● Initial password
● Password reset
● Remember me
● Email address

verification

● OAuth
● CAPTCHA
● SSO
● Two factor

authentication
● OpenID
● XSRF protection

… and the list goes on

A simple web app

The token generator

import java.util.Random;

public class TokenGenerator {

 private final Random random = new Random();

 public String generateToken() {
 return Long.toHexString(random.nextLong());
 }
}

The token generator

● Generates 64 bit hex encoded tokens
● At first glance, appears to generate 264

possible tokens
● Would take millenia to brute force, right?

java.util.Random

● Linear congruential PRNG
● Uses 48 bit seed
● Is it bad?

● That all depends on what you want to use it
for

Linear Congruential PRNG

● Mantains a seed or state with n bits
● On each call to next:

– Multiply seed by some prime number
– Add some other prime number
– Trim back down to n bits
– … and now you have your next seed

● If you choose the right numbers to multiply
and add, you get an even spread of random
numbers

In Binary...

Seed: 111111100110011100110101110110110100110100011011
Multiplier: 10111011110111011001110011001101101 *
 --
 1111101000011111011000001110010001110100100010100001011001111111
Addend: 1011 +
 --
 1111101000011111011000001110010001110100100010100001011010001010
Bit mask: 11 &
 --
New seed: 011000001110010001110100100010100001011010001010

But we wanted a long?

● java.util.Random generates two 32 bit ints,
and puts them next to each other

● So, a long actually contains two tokens
● To generate an int, it bitshifts the seed to

the right by 16 bits

Seed One: 111111100110011100110101110110110100110100011011
Seed Two: 011000001110010001110100100010100001011010001010
Next Long:
 1111111001100111001101011101101101100000111001000111010010001010

Exploiting our app

● Given a single token, can we predict the
next token?

● If we can guess the seed, yes!
● But we only have 32 bits of the 48 bit seed
● The bit shift discarded 16 bits
● That means we only have to try 65536

possible seeds

Pseudocode
a = first 32 bits of token
b = second 32 bits of token
for i = 0 to 65535:
 seed = (a << 16) + i
 if (nextInt(seed) == b):
 // We've found the seed
 print seed

function nextInt(seed):
 return ((seed * multiplier + addend) & mask)
 >>> 16

This runs in less than 10ms!

Demo

Rule #1

● Don't use a PRNG for which the internal
state can be guessed based on its output

– This means looking for a PRNG that is
labelled 'cryptographically secure'

– Or, use an entropy based RNG

Second attempt

import java.security.SecureRandom;

public class TokenGenerator {

 private final SecureRandom random;

 public TokenGenerator() throws Exception {
 random = SecureRandom.getInstance("SHA1PRNG");
 random.setSeed(System.currentTimeMillis());
 }

 public String generateToken() {
 return Long.toHexString(random.nextLong());
 }
}

java.security.SecureRandom

● Platform dependent, default on Windows is
SHA1PRNG

● Uses 160 bit seed
● Uses the SHA1 hashing algorithm to update

the seed on each call to next
● Is considered to be cryptographically secure
● The algorithm is only as strong as the seed

seeding it

Exploiting our app

● The initial seed is the time at which the app
started

● There may have been a few tokens
generated since we generated ours

● If we can guess the time at which the app
started, and guess the maximum tokens
generated, we can brute force the initial
seed

Pseudo code
a = first 32 bits of token
b = second 32 bits of token
t = earliest possible application start time
while true:
 r = SecureRandom.getInstance(”SHA1PRNG”);
 r.setSeed(t)
 for i = 1 to 100:
 if (random.nextInt() == a and
 random.nextInt() == b):
 // We've found the seed
 print t
 t++

May take minutes/hours/days depending
on how accurate our start time estimate is

Demo

Rule #2

● Don't use a seed that can be guessed
– The seed should be entropy based
– Use an entropy source written by the experts
– Always read the docs on how a CSPRNG

should be used

Best practices

● Never use a home brewed random number
generator for anything to do with security

● Always read up on what CSPRNG are
available

● Always make sure that you are using a
CSPRNG as intended to be used – for
SecureRandom, that means not calling
setSeed(), it will seed itself securely.

Best practices

● Use automated tools such as checkstyle to
ensure insecure generators are not used

● Incorporate code reviews into your
development process

● Educate developers frequently on security
topics, for example, run brown bag sessions

CSPRNG for your language

Language Insecure CSPRNG
Java java.util.Random –

Linear Congruential
java.security.SecureRandom -
/dev/urandom, SHA1PRNG

Ruby rand() - Mersenne
Twister

ActiveSupport::SecureRandom –
openssl, /dev/urandom/, Win32
CryptGenRandom

Python random() - Mersenne
Twister

os.urandom() - /dev/urandom,
Win32 CryptGenRandom

Questions?

Supplement: The Mersenne Twister

● Uses an internal state of 624 32 bit integers
● Hands each integer out sequentially,

applying a fuction to even out distribution
● After handing out all 624 integers, applys a

function to the internal state to get the next
624 integers

Generating the next state

● Uses bit shifting, bit masking and xor
operators

for (int i = 0; i < 624; i++) {
 int y = (state[i] & 0x80000000) |
 (state[(i + 1) % 624] & 0x7fffffff);
 int next = y >>> 1;
 next ^= state[(i + 397) % 624];
 if ((y & 1) == 1) {
 next ^= 0x9908b0df;
 }
 state[i] = next;
}

Getting the next int

● Obtaining the next int involves applying the
following algorithm to the integer:

 int tmp = state[current];
 tmp ^= tmp >>> 11;
 tmp ^= (tmp << 7) & 0x9d2c5680;
 tmp ^= (tmp << 15) & 0xefc60000;
 tmp ^= tmp >>> 18;

Determining the internal state

● Obtain 624 consecutive integers
● Reverse the transformation applied to each

Reversing the transformation

● The reverse of an xor operation is applying it
again: X ^ Y ^ Y = X

● Take each of the four xors in order, and see
if we can unapply them

Transformation Step 4

● tmp ^= tmp >>> 18
● In binary:

10110111010111100111111001110010
tmp

00000000000000000010110111010111100111111001110010
tmp >>> 18

10110111010111100101001110100101
tmp ^ (tmp >>> 18)

Transformation Step 4

● The first 18 bits of the result is the first 18
bits of the original number

● The next 14 bits can be obtained by xoring
the result with the first 18 bits bitshifted to
the right

● We can generalise this for any number of
bits, and so solve for step 1 too

Undoing Right Bitshift

int unBitshiftRightXor(int value, int shift) {
 int i = 0;
 int result = 0;
 while (i * shift < 32) {
 int partMask = (-1 << (32 - shift)) >>> (shift * i);
 int part = value & partMask;
 value ^= part >>> shift;
 result |= part;
 i++;
 }
 return result;
}

Undoing Left Bitshift

● tmp ^= (tmp << 15) & 0xefc60000
● This is similar to undoing the right bitshift,

except we need to apply the mask each time
we unapply

Undoing Left Bitshift

int unBitshiftLeftXor(int value, int shift, int mask) {
 int i = 0;
 int result = 0;
 while (i * shift < 32) {
 int partMask = (-1 >>> (32 - shift)) << (shift * i);
 int part = value & partMask;
 value ^= (part << shift) & mask;
 result |= part;
 i++;
 }
 return result;
}

Putting it all together

 int value = output;
 value = unBitshiftRightXor(value, 18);
 value = unBitshiftLeftXor(value, 15, 0xefc60000);
 value = unBitshiftLeftXor(value, 7, 0x9d2c5680);
 value = unBitshiftRightXor(value, 11);

Questions?

For more information, please visit

http://jazzy.id.au/default/tags/prng

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

