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Opinions on PRNG

the problem … was that it was predictable due 
to the seeding either not happening or the 

seed value being recoverable … So just using a 
better seed for srand() should help there, as I 

understand.  Or am I missing something?

Comment from a Firefox developer



  

Opinions on PRNG

The important thing is that we choose a seed 
that is sufficiently hard to guess.

Myself, 2 years ago



  

Maybe this is you

● Exploiting random number generators is 
doable, but hard

● Securely generating random numbers is all 
about choosing a good seed

● There are simple techniques that can be 
used to choose a good seed

● You need a lot of maths to know anything 
about random number generators



  

You will learn

● How easy it is to exploit applications that 
use random number generators badly

● A secure seed is not enough to generate 
secure random numbers

● Choosing a secure seed is difficult
● How to securely generate random numbers



  

Maths

● This presentation will have very little maths
– Multiplication
– Addition
– Bit masking
– Bit shifting
– Some binary/hex



  

Cryptography

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html



  

Web Developers

● They don't:
– Understand cryptography
– Want to understand cryptography
– Need to understand cryptography

● Or do they?



  

Tokens

● Small amount of 
random data

● Used for 
identification

● Must be hard to 
guess



  

Tokens on the web
● Session tracking
● RPC authentication
● Initial password
● Password reset
● Remember me
● Email address 

verification

● OAuth
● CAPTCHA
● SSO
● Two factor 

authentication
● OpenID
● XSRF protection

… and the list goes on



  

A simple web app



  

The token generator

import java.util.Random;

public class TokenGenerator {

    private final Random random = new Random();

    public String generateToken() {
        return Long.toHexString(random.nextLong());
    }
}



  

The token generator

● Generates 64 bit hex encoded tokens
● At first glance, appears to generate 264 

possible tokens
● Would take millenia to brute force, right?



  

java.util.Random

● Linear congruential PRNG
● Uses 48 bit seed
● Is it bad?

● That all depends on what you want to use it 
for



  

Linear Congruential PRNG

● Mantains a seed or state with n bits
● On each call to next:

– Multiply seed by some prime number
– Add some other prime number
– Trim back down to n bits
– … and now you have your next seed

● If you choose the right numbers to multiply 
and add, you get an even spread of random 
numbers



  

In Binary...

Seed:              111111100110011100110101110110110100110100011011 
Multiplier:                     10111011110111011001110011001101101 *
   ----------------------------------------------------------------
   1111101000011111011000001110010001110100100010100001011001111111
Addend:                                                        1011 +
   ----------------------------------------------------------------
   1111101000011111011000001110010001110100100010100001011010001010
Bit mask:          111111111111111111111111111111111111111111111111 &
   ----------------------------------------------------------------
New seed:          011000001110010001110100100010100001011010001010



  

But we wanted a long?

● java.util.Random generates two 32 bit ints, 
and puts them next to each other

● So, a long actually contains two tokens
● To generate an int, it bitshifts the seed to 

the right by 16 bits

Seed One:          111111100110011100110101110110110100110100011011 
Seed Two:          011000001110010001110100100010100001011010001010
Next Long:
   1111111001100111001101011101101101100000111001000111010010001010



  

Exploiting our app

● Given a single token, can we predict the 
next token?

● If we can guess the seed, yes!
● But we only have 32 bits of the 48 bit seed
● The bit shift discarded 16 bits
● That means we only have to try 65536 

possible seeds



  

Pseudocode
a = first 32 bits of token
b = second 32 bits of token
for i = 0 to 65535:
    seed = (a << 16) + i
    if (nextInt(seed) == b):
        // We've found the seed
        print seed

function nextInt(seed):
    return ((seed * multiplier + addend) & mask)
           >>> 16

This runs in less than 10ms!



  

Demo



  

Rule #1

● Don't use a PRNG for which the internal 
state can be guessed based on its output

– This means looking for a PRNG that is 
labelled 'cryptographically secure'

– Or, use an entropy based RNG



  

Second attempt

import java.security.SecureRandom;

public class TokenGenerator {

    private final SecureRandom random;

    public TokenGenerator() throws Exception {
        random = SecureRandom.getInstance("SHA1PRNG");
        random.setSeed(System.currentTimeMillis());
    }

    public String generateToken() {
        return Long.toHexString(random.nextLong());
    }
}



  

java.security.SecureRandom

● Platform dependent, default on Windows is 
SHA1PRNG

● Uses 160 bit seed
● Uses the SHA1 hashing algorithm to update 

the seed on each call to next
● Is considered to be cryptographically secure
● The algorithm is only as strong as the seed 

seeding it



  

Exploiting our app

● The initial seed is the time at which the app 
started

● There may have been a few tokens 
generated since we generated ours

● If we can guess the time at which the app 
started, and guess the maximum tokens 
generated, we can brute force the initial 
seed



  

Pseudo code
a = first 32 bits of token
b = second 32 bits of token
t = earliest possible application start time
while true:
    r = SecureRandom.getInstance(”SHA1PRNG”);
    r.setSeed(t)
    for i = 1 to 100:
        if (random.nextInt() == a and
                random.nextInt() == b):
            // We've found the seed
            print t
    t++ 

May take minutes/hours/days depending
on how accurate our start time estimate is 



  

Demo



  

Rule #2

● Don't use a seed that can be guessed
– The seed should be entropy based
– Use an entropy source written by the experts
– Always read the docs on how a CSPRNG 

should be used



  

Best practices

● Never use a home brewed random number 
generator for anything to do with security

● Always read up on what CSPRNG are 
available

● Always make sure that you are using a 
CSPRNG as intended to be used – for 
SecureRandom, that means not calling 
setSeed(), it will seed itself securely.



  

Best practices

● Use automated tools such as checkstyle to 
ensure insecure generators are not used

● Incorporate code reviews into your 
development process

● Educate developers frequently on security 
topics, for example, run brown bag sessions



  

CSPRNG for your language

Language Insecure CSPRNG
Java java.util.Random – 

Linear Congruential
java.security.SecureRandom - 
/dev/urandom, SHA1PRNG

Ruby rand() - Mersenne 
Twister

ActiveSupport::SecureRandom – 
openssl, /dev/urandom/, Win32 
CryptGenRandom

Python random() - Mersenne 
Twister

os.urandom() - /dev/urandom, 
Win32 CryptGenRandom 



  

Questions?



  

Supplement: The Mersenne Twister

● Uses an internal state of 624 32 bit integers
● Hands each integer out sequentially, 

applying a fuction to even out distribution
● After handing out all 624 integers, applys a 

function to the internal state to get the next 
624 integers



  

Generating the next state

● Uses bit shifting, bit masking and xor 
operators

for (int i = 0; i < 624; i++) {
  int y = (state[i] & 0x80000000) |
       (state[(i + 1) % 624] & 0x7fffffff);
  int next = y >>> 1;
  next ^= state[(i + 397) % 624];
  if ((y & 1) == 1) {
    next ^= 0x9908b0df;
  }
  state[i] = next;
}



  

Getting the next int

● Obtaining the next int involves applying the 
following algorithm to the integer:

    
    int tmp = state[current];
    tmp ^= tmp >>> 11;
    tmp ^= (tmp << 7) & 0x9d2c5680;
    tmp ^= (tmp << 15) & 0xefc60000;
    tmp ^= tmp >>> 18;



  

Determining the internal state

● Obtain 624 consecutive integers
● Reverse the transformation applied to each



  

Reversing the transformation

● The reverse of an xor operation is applying it 
again: X ^ Y ^ Y = X

● Take each of the four xors in order, and see 
if we can unapply them



  

Transformation Step 4

● tmp ^= tmp >>> 18
● In binary:

10110111010111100111111001110010
tmp

00000000000000000010110111010111100111111001110010
tmp >>> 18

10110111010111100101001110100101
tmp ^ (tmp >>> 18)



  

Transformation Step 4

● The first 18 bits of the result is the first 18 
bits of the original number

● The next 14 bits can be obtained by xoring 
the result with the first 18 bits bitshifted to 
the right

● We can generalise this for any number of 
bits, and so solve for step 1 too 



  

Undoing Right Bitshift

int unBitshiftRightXor(int value, int shift) {
  int i = 0;
  int result = 0;
  while (i * shift < 32) {
  int partMask = (-1 << (32 - shift)) >>> (shift * i);
    int part = value & partMask;
    value ^= part >>> shift;
    result |= part;
    i++;
  }
  return result;
}



  

Undoing Left Bitshift

● tmp ^= (tmp << 15) & 0xefc60000 
● This is similar to undoing the right bitshift, 

except we need to apply the mask each time 
we unapply



  

Undoing Left Bitshift

int unBitshiftLeftXor(int value, int shift, int mask) {
  int i = 0;
  int result = 0;
  while (i * shift < 32) {
    int partMask = (-1 >>> (32 - shift)) << (shift * i);
    int part = value & partMask;
    value ^= (part << shift) & mask;
    result |= part;
    i++;
  }
  return result;
}



  

Putting it all together

    
    int value = output;
    value = unBitshiftRightXor(value, 18);
    value = unBitshiftLeftXor(value, 15, 0xefc60000);
    value = unBitshiftLeftXor(value, 7, 0x9d2c5680);
    value = unBitshiftRightXor(value, 11);



  

Questions?

For more information, please visit

http://jazzy.id.au/default/tags/prng
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