Testing Asynchronous Behaviour
In an Instant Messaging Server

John Hughes
Chalmers University/Quviq AB

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object’
and 'premature eof' every other month the
last year. We have not been able to track the
bug down since the dets files is repaired
automatically next time it is opened.”

Tobbe Tornqvist, Klarna, 2007

Application

Mnesia

Dets

File system

300
What is it? people in
5 years
W¥klarna
Invoicing services for web shops

Distributed database:
transactions, distribution,
replication

Tuple storage

Imagine Testing This...

dispenser:take_ticket()

dispenser:reset()

A Unit Test in Erlang

test dispenser() ->

k = reset(),
= take ticket(),
take ticket(),
take ticket(),
reset (),
take ticket().

k

©°
1
2 =
3
O
1

Expected

results

A Parallel Unit Test

* Three possible correct
outcomes!

Another Parallel Test

e 42 possible correct outcomes!

Property-Based Testing

* Write properties instead of expected outputs
— e.g. sort([A,B,C]) ==[1,2,3]

* Can handle a variety of outputs
=>» can generate test cases

QuickCheck Demo

State Machine Models

e Test case is a list of commands

{call, Module,Function,Arguments}

* Model the state abstractly
next state(S, V,{call, ,reset, }) ->
0;
next state(S, V,{call, ,take ticket, }) ->
S+1.

* Define postconditions

postcondition (S, {call, ,take ticket, },Res) ->
Res == S+1;

Generate a test case
from the callbacks in

?MODULE

prop dispenser() ->
?FORALL (Cmds , commands (?MODULE) ,

begin
start (),
{ H, S,Res} = run commands (?MODULE, Cmds) ,
Res == ok

end) .

Run the list of
commands and check

postconditions wrt the
model state

Parallel Test Cases

@ @

e Use the same state machine model!

Generate parallel
test cases

prop parallel() ->
?FORALL (Cmds ,parallel commands (?MODULE) ,
begin
start (),
{H,Par,Res} =
run parallel commands (?MODULE,Cmds),
Res == ok)
end)) .

Run tests, check for a

matching serialization

DEMO

Prefix:
. take ticket() --> 1
e Sometimes: reset () --> ok

reset () --> ok
reset () --> ok
take ticket() -->
take ticket() --> 2
reset () --> ok

take ticket() --> 1

-

Parallel:
1. take ticket() --> 2
take ticket() --> 3

2. take ticket() --> 2

Result:
no possible interleaving

take ticket() ->

: N = read()
Prefix: ’
ret write(N+1),
Parallel: N+1.

1. take_ticket() --> 1
2. take ticket() --> 1

Result: no_possible_interleaving

dets

* Tuple store:
{Key, Valuel, Value2...}
* Operations:
— insert(Table,ListOfTuples)

— delete(Table,Key)
— insert_new(Table,ListOfTuples)

* Model: .y
— List of tuples 6.3 KLOC

200 LOC

Bug #1

insert_new(Name, Objects) -> Bool

Prefix: . TVPES:
open file (det:
- Name = name()
Objects = object() | [object()]

Parallel: Bool = bOO'()

1. insert(dets t:
2. insert new(dets table,[]) --> ok

Result: no possible interleaving

Bug #2

Prefix:
open file(dets table, [{type,set}]) --> dets_ table

Parallel:
l. insert(dets table, {0,0}) --> ok

2. insert new(dets table, {0,0}) --> ..time out..

=ERROR REPORT====4-0ct-2010::17:08:21 ===
** dets: Bug was found when accessing table dets_table

Bug #3

Prefix:
open file(dets table,[{type,set}]) --> dets table

Parallel:
l. open file(dets table, [{type,set}]) --> dets table

2. insert(dets_table, {0,0}) --> ok
get contents(dets_table) --> []

Result: no possible interleaving

Bug #4

Prefix:
open file(dets_ table, [{type,bag}]) --> dets_ table
close (dets_ table) --> ok
open file(dets table, [{type,bag}]) --> dets_ table

Parallel:
1. lookup(dets table,0) --> []

2. insert(dets_table, {0,0}) --> ok
3. insert(dets_table, {0,0}) --> ok

Result: ok

premature eof

Bug #5

Prefix:
open file(dets_ table, [{type,set}]) --> dets table
insert (dets_ table,[{1,0}]) --> ok

Parallel:
1. lookup(dets table,0) --> []
delete (dets_table,l) --> ok
2. open file(dets table,[{type,set}]) --> dets table

Result: ok
false

bad object

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object’
and '‘premature eof' every other month the

Each bug fixed the day
after reporting the

failing case

How come?

e Race conditions are hard to unit test

* Testing with properties is powerful!

— Finds cases noone thinks to test

ejabberd

* An instant messaging server

 Market leader in XMPP messaging
— 38% of XMPP servers run ejabberd

* Improve testing to prepare for a major
refactoring

— In particular, test message delivery

ejabberd

@ister Alice Register BOD
Login Alice >
Login Bob

< Login Bob
Send “Hi” to Bob’>

g Deliver "Hi”

. — D'I- IIH'”
——)

Logout

Approach

Random Trace of

observed
events

sequences of
commands

ejabberd

Problems, problems

 Multiple correct behaviours

— No "expected results”

* Observed events not recorded atomically
— |naccurate times
— Inaccurate order of events

 Complexity! Need a simple way to specify...

Temporal Relations

 Atemporal relation is a relation between
times and values

Alternatively, a
set of values at
each time

Alternatively,
values with a
lifetime

10

11

15

26

31

33

Example

{login,alice,laptop}
{login,bob,desktop}

{login,bob,phone}
{send,alice,bob,”Hi”}
{delivery,alice,bob,desktop,”Hi"}

{logout,bob,phone}

Events as a
temporal
relation

{logged in,
bob,
phone}

States as
a

temporal
relation

Logged-in Users

LoggedIn = stateful (fun logging in/1,
fun logging out/2,
Events)

e Start a state on a matching event

logging in({login,Uid,ResourcelId}) ->
[{logged in,Uid,ResourcelId}].

* Transform a state on a matching event
logging out({logged in,Uid,Rid} Ev) ->
case Ev of
{logout,Uid,Rid} -> [];
{unregister,Uid} -> []
end.

Message Creations

...to every pair of an
event and logged-in
user

Apply this
function...

user Is —

MessageCred\tions 4
map (fun messdge creation/1,
product (Events, LoggedIn))

message creation({{send,From,To, Msg},
{logged in,To,Rid}}) ->
{message,From,To,Rid, Msg}.

Messages in flight

Messages = stateful (fun start message/1l,
fun stop message/2,
union (MessageCreations,
Events))

start message ({message,From,To,R,Msg}) ->
[{message,From,To,R,Msqg}].

stop message ({message,From,To,R,Msg}, Ev) ->
case Ev of
{delivery,From,To,R,Msg} -> [];
{logout,To,R} -> []1;
{unregister, To} -> []
end.

Message Delivery Deadline

* A relation containing messages overdue for
delivery...

Overdue = all past(100,Messages)
— In flight for the last 100 ms

R
* |n the property, check

al I_pa i erpty (Overdue

Timing Uncertainty

* |f a user logs in on a second resource just
before a message is sent, it need not be
delivered...login may not be complete

MaybeloggedIn = any past(15,LoggedIn),

MustbelLoggedIn all past(l5,LoggediIn),
Maybel.oggedOut = complement (MustbelLoggedIn)

LoggedIn
MaybeloggedIn
MustbeloggedIn

MaybeloggedOut

How well did it work?

* ~300 LOC replaced ad hoc version
* New spec was more modular and declarative

— E.g. Messages may be delivered after a logout—
for a short time

* Old: needed 26 LOC at 4 separate locations
* New: MaybeloggediIn
— E.g. Message delivery deadline

* Old: appearsin 5 places
* New: OverdueMessages

We even found bugs!

* Send M to Bob & Bob logs in close together
— M should be delivered to Bob
— M only delivered on Bob’s next login

* Send M to Bob & Bob logs out close together

— M should be delivered to Bob now, or on next
login

— M may be lost altogether

Summary

* Race conditions require property-based
testing
— Serializability is an effective property to use

— Temporal relations express asynchronous
properties simply

* QuickCheck makes it easy to find concurrency
bugs that have lurked in production code for
years

