
CONTINUOUS DEPLOYMENT
AND DEVOPS

D E P R E C A T I N G S I L O S

JOSH DEVINS, NOKIA
TOM SULSTON, THOUGHTWORKS

JAOO 2010
ÅRHUS, DENMARK

1Monday, October 4, 2010

WHO ARE WE AND WHERE
ARE WE FROM?

• Josh Devins, Nokia Berlin

• Software architect, Location Services

• Sysadmin of honour

• Tom Sulston, ThoughtWorks

• Lead consultant

• DevOps, build & deploy

2Monday, October 4, 2010

Flip to ovi maps, describe what the product is (kind of)

PROBLEM SITUATION
3Monday, October 4, 2010

A few words of introduction on what the “before” state was
- web and device
- growth from startup to millions of devices/mo
- free navigation earlier this year increased usage
- rapid feature and team growth

DEVELOPMENT AND
OPERATIONS SILOS

4Monday, October 4, 2010

http://www.flickr.com/photos/tonyjcase/4092410854/sizes/l/in/photostream/

Developers and operations teams separated both organisationally and physically
Whole different organisational structure - need to go to C-level (VP-level?) to find a common
reporting line
Started as a hardware company, and really bolted on services at the beginning
Poor alignment of technology choices (base OS, packaging, monitoring)
Very little common ground, because...

MANY SEPARATE TEAMS
5Monday, October 4, 2010

- lots of technology/approach divergence caused by:
- many ops teams - “operations”, “transitions”, “development support”
- many development teams - frontend, backend, backend function x/y/z
 - Conway’s Law
 - short term scaled well and fast
 - right intention of giving small teams autonomy but...balance needed
- Lots of integration points
 - more complexity than necessary
 - lots of inventory
 - Integration is v. painful

TOO MUCH MANUAL WORK
6Monday, October 4, 2010

- lots of things done by hand, non-repeatable
 QA, almost nothing automated (except where really necessary -- perf tests)
 Baroque configuration process
 Releases take a long time and a lot of manual testing/verification
 Cycle time is very slow
 Right intentions, did not scale

- change management process (?)
- carrying knowledge/understanding across silos has a cost (x4)
Frequent rework - fixing the same problem again and again and usually at the last-minute

DIFFICULT DEPLOYMENTS
7Monday, October 4, 2010

http://www.flickr.com/photos/14608834@N00/2260818367/sizes/o/in/photostream/

- reality: about one and a half people knew how the whole thing worked end-to-end
- reality: ~10-days to build a new image with Java, 5 Tomcat instances, as many war files,
nothing else!
- worse: the "image system" was not used anywhere except staging and production so failures
can very late
- maintenance: in dev/QA regular Debian systems with DEB packaging was used, had to
essentially maintain two complete distribution mechanisms

- change management process is heavyweight
 - ITIL++, multi-tab Excel spreadsheets, CABs in other countries, not directly involved
 - often circumvented
 - communication gaps between ops teams

- package and config structure (ISO + rsync)
- it worked, but was slow and cryptic
- building whole OS images in very slow and non-parallelisable (4 hrs?) CI
- multi-phased approach requiring first a custom packaging system and description language
(VERY cryptic and bespoke)
- using PXE Linux to boot images from a central control server for configuration rsync
- any booted server can act as a peer to boot other machines

AD-HOC INFRASTRUCTURE
MANAGEMENT

8Monday, October 4, 2010

http://www.flickr.com/photos/14608834@N00/2260818367/sizes/o/in/photostream/

- lots of things done by hand, non-repeatable
- “We don’t have time to do it right”

- time-to-recovery is slow
- monitoring is:
 inconsistent (lots of false alarms)
 unclear (multiple tools, teams)
 too coarse (the site is down!)
- hard to triage infrastructure or code issues
- inventory management is weak
- many data centres,
- not enough knowledge kept in-house

MAKING IT BETTER
9Monday, October 4, 2010

- Any questions on describing the problem?
 - has anyone got similar problems?
- What actions did we take to address these issues?

Time check: 20 mins

CONTINUOUS DELIVERY

10Monday, October 4, 2010

http://www.flickr.com/photos/snogging/4688579468/sizes/l/

- what is continuous delivery?
- Continuous Delivery: every SCM commit results in releasable software
- that is, from a purely infrastructural and "binary-level" perspective, the software is always
releasable
- This includes layers of testing, not just releasing anything that compiles!
- features may be incomplete, etc. so in practice you might not actually release every commit
(ie: Continuous Deployment)
- “If something hurts, do it more often”
- You should have gone to Jez’s session this morning!

CONTINUOUS DELIVERY

More!

10Monday, October 4, 2010

http://www.flickr.com/photos/snogging/4688579468/sizes/l/

- what is continuous delivery?
- Continuous Delivery: every SCM commit results in releasable software
- that is, from a purely infrastructural and "binary-level" perspective, the software is always
releasable
- This includes layers of testing, not just releasing anything that compiles!
- features may be incomplete, etc. so in practice you might not actually release every commit
(ie: Continuous Deployment)
- “If something hurts, do it more often”
- You should have gone to Jez’s session this morning!

CONTINUOUS INTEGRATION
AND BUILD PIPELINE

11Monday, October 4, 2010

http://www.uvm.edu/~wbowden/Image_files/Pipeline_at_Kuparuk.jpg
- how do we get from a SCM commit to something that is deployable and tested enough?
- Building the ‘conveyor belt’
- Turn up existing CI practices to 11
 - Each team already did “build & unit test” - no deployable package (WARs to Nexus)
 - Automated integration of various teams’ work
 - Automated integration testing
 - Testing deployments - same method on all environments
- Currently using Hudson & ant - this works OK.

CONTINUOUS INTEGRATION
AND BUILD PIPELINE

More!

11Monday, October 4, 2010

http://www.uvm.edu/~wbowden/Image_files/Pipeline_at_Kuparuk.jpg
- how do we get from a SCM commit to something that is deployable and tested enough?
- Building the ‘conveyor belt’
- Turn up existing CI practices to 11
 - Each team already did “build & unit test” - no deployable package (WARs to Nexus)
 - Automated integration of various teams’ work
 - Automated integration testing
 - Testing deployments - same method on all environments
- Currently using Hudson & ant - this works OK.

A DIVERSION INTO
MAVEN PAIN

12Monday, October 4, 2010

http://www.petsincasts.com/?p=162

- workaround: don't use the Maven "release" process or just live with it and do Maven
"releases" as often as possible
- lesson learned: don't try to mess with "the Maven way", it gets very hairy and is a huge time
suck
- lesson learned: don't depend on SNAPSHOT dependencies unless they are under your own
control (can't safely release your module with SNAPSHOT deps meaning you will have to wait
for someone else to release their module)

- standard Maven versioning lifecycle: 1.0.0-SNAPSHOT, pull down dependencies (some
SNAPSHOTs themselves) from some repository (usually one that is not integrated with your
source code repository)
- working away on 1.0.0-SNAPSHOT and I'm ready to release so then do a Maven "release",
tagging SCM, and I get version 1.0.0
- crap we found a bug, so we keep working now on version 1.0.1-SNAPSHOT
- okay, ready to release again so I get version 1.0.1
- do some testing and everything is happy so I drop my 1.0.1 war into my production Tomcat
- what's wrong with this picture?
- key: we "release" software BEFORE we are satisfied with its' quality
- like we said before, continuous delivery is all about the possibility of releasing to production
at all times, from all commits

A DIVERSION INTO
MAVEN PAIN

Less!

12Monday, October 4, 2010

http://www.petsincasts.com/?p=162

- workaround: don't use the Maven "release" process or just live with it and do Maven
"releases" as often as possible
- lesson learned: don't try to mess with "the Maven way", it gets very hairy and is a huge time
suck
- lesson learned: don't depend on SNAPSHOT dependencies unless they are under your own
control (can't safely release your module with SNAPSHOT deps meaning you will have to wait
for someone else to release their module)

- standard Maven versioning lifecycle: 1.0.0-SNAPSHOT, pull down dependencies (some
SNAPSHOTs themselves) from some repository (usually one that is not integrated with your
source code repository)
- working away on 1.0.0-SNAPSHOT and I'm ready to release so then do a Maven "release",
tagging SCM, and I get version 1.0.0
- crap we found a bug, so we keep working now on version 1.0.1-SNAPSHOT
- okay, ready to release again so I get version 1.0.1
- do some testing and everything is happy so I drop my 1.0.1 war into my production Tomcat
- what's wrong with this picture?
- key: we "release" software BEFORE we are satisfied with its' quality
- like we said before, continuous delivery is all about the possibility of releasing to production
at all times, from all commits

CDC TESTING
13Monday, October 4, 2010

CDC - Consumer-Driven Contract
http://www.martinfowler.com/articles/consumerDrivenContracts.html
Each service/team provides tests for those teams whose services they consume. (ie: If I use
your service, I write you a test that expresses how I am using it. You can then run that test in
your build.)
Lets us do quick integration-type testing at the unit/functional level.
Much easier than maintaining stubs.
Designed to catch integration failures earlier (typical failure mode is for clients/servers to
diverge while still passing their own tests, only to be caught at manual QA stages)
Ceremony for giving tests to another team

CDC TESTING

More!

13Monday, October 4, 2010

CDC - Consumer-Driven Contract
http://www.martinfowler.com/articles/consumerDrivenContracts.html
Each service/team provides tests for those teams whose services they consume. (ie: If I use
your service, I write you a test that expresses how I am using it. You can then run that test in
your build.)
Lets us do quick integration-type testing at the unit/functional level.
Much easier than maintaining stubs.
Designed to catch integration failures earlier (typical failure mode is for clients/servers to
diverge while still passing their own tests, only to be caught at manual QA stages)
Ceremony for giving tests to another team

PACKAGING: RPM
& YUM

14Monday, October 4, 2010

http://www.flickr.com/photos/delgrossodotcom/2553424895/
- Build once!
- passing deployable packages (RPMs) up the value chain
 - Categorically 100% sure that you’re testing what you’re going to deploy
- Can wrap up all sorts of useful things in OS packages
 - reference data
 - hook scripts
 - dependencies on tiered applications
- build pipeline of repositories
 - Each repo means “X level of testing has been done on these packages”
 - gotcha: createrepo caching
 - gotcha: no concurrent running of createrepo
 - gotcha: using metapackages to join versions (Might re-introduce in future)

PACKAGING: RPM
& YUM

Keep doing!

14Monday, October 4, 2010

http://www.flickr.com/photos/delgrossodotcom/2553424895/
- Build once!
- passing deployable packages (RPMs) up the value chain
 - Categorically 100% sure that you’re testing what you’re going to deploy
- Can wrap up all sorts of useful things in OS packages
 - reference data
 - hook scripts
 - dependencies on tiered applications
- build pipeline of repositories
 - Each repo means “X level of testing has been done on these packages”
 - gotcha: createrepo caching
 - gotcha: no concurrent running of createrepo
 - gotcha: using metapackages to join versions (Might re-introduce in future)

RDBMS, NOSQL,
DATA DEPLOYMENT

15Monday, October 4, 2010

- not doing this yet, but here are some ideas
- Currently using mySQL - is there a need to change to Key/Value store?
- RDBMS: check out ???
- NoSQL: big, huge question mark and little tooling support, so consider this seriously if
considering NoSQL
- some teams are using BitTorrent to distribute large (GB and TB) datasets around the world -
Lucene indices, map files, etc.
- similar to the idea that Twitter uses to deploy stuff with their Murder tool
- can we use dbdeploy?

RDBMS, NOSQL,
DATA DEPLOYMENT

???

15Monday, October 4, 2010

- not doing this yet, but here are some ideas
- Currently using mySQL - is there a need to change to Key/Value store?
- RDBMS: check out ???
- NoSQL: big, huge question mark and little tooling support, so consider this seriously if
considering NoSQL
- some teams are using BitTorrent to distribute large (GB and TB) datasets around the world -
Lucene indices, map files, etc.
- similar to the idea that Twitter uses to deploy stuff with their Murder tool
- can we use dbdeploy?

PUPPET

16Monday, October 4, 2010

- Puppet overview & alternatives (Chef, CFEngine, hand-rolled tools)
- manifests
- modules and inheritance
- passing puppet configs with deployable code + configs
- Driven from developer-facing sysadmins

PUPPET

More!

16Monday, October 4, 2010

- Puppet overview & alternatives (Chef, CFEngine, hand-rolled tools)
- manifests
- modules and inheritance
- passing puppet configs with deployable code + configs
- Driven from developer-facing sysadmins

BDD
17Monday, October 4, 2010

- infrastructure testing with cucumber-puppet
- applying good development practices to the Ops world
- absolutely crucial to having a refactorable infrastructure
 - how unchanging are your systems?
- can we start doing Behaviour-driven releases?
- This is alpha software!
- Does not catch all errors

BDD

More!

17Monday, October 4, 2010

- infrastructure testing with cucumber-puppet
- applying good development practices to the Ops world
- absolutely crucial to having a refactorable infrastructure
 - how unchanging are your systems?
- can we start doing Behaviour-driven releases?
- This is alpha software!
- Does not catch all errors

APPLICATION
CONFIGURATION

18Monday, October 4, 2010

Configurations passed up from development team through Subversion
Deployed with puppet
Tested with cucumber-puppet
Tested on application start for missing values
Bundling application deployments simplifies configuration
TODO: review architecture of all apps and simplify (easier now that deployment tech debt is
reduced)

APPLICATION
CONFIGURATION

Less!

18Monday, October 4, 2010

Configurations passed up from development team through Subversion
Deployed with puppet
Tested with cucumber-puppet
Tested on application start for missing values
Bundling application deployments simplifies configuration
TODO: review architecture of all apps and simplify (easier now that deployment tech debt is
reduced)

PRE-FLIGHT TESTING
19Monday, October 4, 2010

http://www.flickr.com/photos/jimbl/2881681649/sizes/o/
- scripted checks before anything even happens
- ensure that the stage is set and all known pre-requisites are tested and monitored
- application health-check on startup (are all my config values set?)
- check_http through nrpe

PRE-FLIGHT TESTING

More!

19Monday, October 4, 2010

http://www.flickr.com/photos/jimbl/2881681649/sizes/o/
- scripted checks before anything even happens
- ensure that the stage is set and all known pre-requisites are tested and monitored
- application health-check on startup (are all my config values set?)
- check_http through nrpe

MONITORING
20Monday, October 4, 2010

http://www.flickr.com/photos/kylesteeddesign/4395772305/sizes/o/
- speaking of monitoring...
- Nagios, nrpe
- cucumber-nagios - Monitoring-driven deployments?
Would like developers to push up monitors alongside features.
 - developers and engineers gaining common understanding around monitoring and
system behaviour

MONITORING

More!

20Monday, October 4, 2010

http://www.flickr.com/photos/kylesteeddesign/4395772305/sizes/o/
- speaking of monitoring...
- Nagios, nrpe
- cucumber-nagios - Monitoring-driven deployments?
Would like developers to push up monitors alongside features.
 - developers and engineers gaining common understanding around monitoring and
system behaviour

ITIL, DEVOPS AND YOU
21Monday, October 4, 2010

ITIL is a framework. DevOps is a series of practices.
While you could have lightweight ITIL implementations, they tend to be process-heavy.
DevOps is about doing all the good technical diligence in a way that marries with Agile
practices and values
- not dependent on tool choice
Build up shared understanding by automation
Jez: A document proves nothing. But a script is real proof that you have done what is in the
script.

ITIL, DEVOPS AND YOU

More
automation

21Monday, October 4, 2010

ITIL is a framework. DevOps is a series of practices.
While you could have lightweight ITIL implementations, they tend to be process-heavy.
DevOps is about doing all the good technical diligence in a way that marries with Agile
practices and values
- not dependent on tool choice
Build up shared understanding by automation
Jez: A document proves nothing. But a script is real proof that you have done what is in the
script.

ITIL, DEVOPS AND YOU

More
automation

Less
administration

21Monday, October 4, 2010

ITIL is a framework. DevOps is a series of practices.
While you could have lightweight ITIL implementations, they tend to be process-heavy.
DevOps is about doing all the good technical diligence in a way that marries with Agile
practices and values
- not dependent on tool choice
Build up shared understanding by automation
Jez: A document proves nothing. But a script is real proof that you have done what is in the
script.

WHERE ARE WE?
22Monday, October 4, 2010

- not doing continuous deployment, but are making-ready
- it takes time for large organisations to catch up to technical change
- addressing cultural issues
- building common understanding and shared ownership

JOIN US!

• Nokia is hiring in Berlin!

• www.nokia.com/careers

• ThoughtWorks is hiring in London, Hamburg and further
abroad.

• www.thoughtworks.com/jobs

23Monday, October 4, 2010

http://www.thoughtworks.com/jobs

THANKS!

JOSH DEVINS, NOKIA
TOM SULSTON, THOUGHTWORKS

JAOO 2010
ÅRHUS, DENMARK

JOSH DEVINS www.joshdevins.net @joshdevins

TOM SULSTON www.thoughtworks.com @tomsulston

24Monday, October 4, 2010

“Stock photos are the bullet points of the twenty-first century” - Martin Fowler

