
Nikhil Kothari
@nikhilk, http://www.nikhilk.net

Software Architect, Microsoft Corporation

ViewModel Pattern and
Interactivity in

Silverlight

Agenda

• Introduction to ViewModel pattern (MVVM)

• ViewModel pattern as an enabler
• Improving testability

• Facilitating designer-developer workflow

• Supporting patterns
• Triggers, actions and behaviors for declarative interactivity

Client Applications and Silverlight

• Interesting trends
• Leveraging new platform capabilities and data services

• Scaling across multiple devices

• Interactive and immersive UX

• Makes patterns for managing complexity and delivering
on UX expectations interesting

• Silverlight
• .NET and XAML-based client application platform

• Consistent development model across in-browser, out-of-
browser, on-device scenarios

• End-to-end tooling

Patterns for Separating UI and Logic

• MVC, MVP, MVVM aka
ViewModel aka Presentation
Model

• General idea is to decouple
application logic from user
interface
• Separation of concerns

• Motivations
• Maintainability, reusability,

testability

• Designer-developer workflow

Data Model

User Interface

Application Logic

ViewModel Pattern

• MVVM (Model – View – View Model)
• An adaption of MVC optimized for a Silverlight-based

active view

• Basic concepts
• View model encapsulates application state, logic, and

access to data or back-end services

• View handles presentation, including rendering and user
input

• Data-binding and commanding provide the glue to stitch
them together

• Opinions creep in as pattern is transformed into
practice

Demo
Hello ViewModel

Recap: ViewModel

Data Model

View

XAML

Code-Behind

View Model

State +
Operations +
Notifications

Property
change and
other event
notifications

Data-binding
and commands

Recap: Markup and Code

XAML
<UserControl>

 <UserControl.DataContext>

 <app:MainPageViewModel />

 </UserControl.DataContext>

 <TextBlock Text="{Binding ScreenName}" />

 <TextBox Text="{Binding Tweet, Mode=TwoWay}" />

 <Button Command="{StaticResource postCommand}" />

</UserControl>

View Model
public class MainPageViewModel : Model {

 public string ScreenName { get; }

 public string Tweet { get; set; }

 public bool CanPost { get; }

 public void Post() { … }

}

Testability

• View and functional testing is relatively expensive
• Doesn’t lend itself well to unit testing

• ViewModel pattern improves testability
• View model contains the interesting state and logic

• Focus on testing the view model by simulating user and
mocking dependencies

Demo
Implementing View Model Tests

using the Silverlight Unit Test Framework

Declarative Interactivity

• Goes hand-in-hand with ViewModel as a
supporting pattern
• An approach to implementing UI logic in declarative

manner

• Three building blocks
• Triggers – when an event occurs

• Actions – perform the specified activity

• Behaviors – reusable encapsulations of one or more pairs
of triggers and actions

Demo
Implementing and Using

Triggers, Actions and Behaviors

Recap: Triggers, Actions and Behaviors

<UserControl>

 <i:Interaction.Triggers>

 <app:ModelEvent EventName="TweetPosted">

 <app:PlaySound Sound="/Assets/Tweet.mp3" />

 </app:ModelEvent>

 </i:Interaction.Triggers>

 <TextBox Text="{Binding Tweet, Mode=TwoWay}">

 <i:Interaction.Behaviors>

 <app:ImmediateCommit />

 </i:Interaction.Behaviors>

 </TextBox>

</UserControl>

Designer/Developer Workflow

• Code-behind creates contention
• No separation of concerns, XAML mixed up with app logic

• ViewModel pattern facilitates better
designer/developer workflow
• View model becomes the contract between designer and

developer

• Designer can focus on the XAML half

• Developer can focus on the implementation of view model

• Bindings and commands enable integration

• Fits in well with sketching/storyboarding based
prototyping

Demo
View Model as a Contract

ViewModel Frameworks and Resources

Some of the many ViewModel frameworks…

• MVVM Light
• By Laurent Bugnion

• http://mvvmlight.codeplex.com

• SilverlightFX
• http://projects.nikhilk.net/SilverlightFX

• http://github.com/NikhilK/SilverlightFX

Additional Resources

• Slides and Code + series of ViewModel-related posts
• http://www.nikhilk.net

• Silverlight Unit Testing Framework and Silverlight Toolkit
• http://silverlight.codeplex.com

• Silverlight developer page
• http://www.silverlight.net

Take-aways

• ViewModel pattern is simple means to separating
application logic from user interface
• Natural fit for Silverlight programming model

• Improves testability and designer/developer workflow

• Facilitates sharing application logic across multi-
screen/device applications

• Behaviors, actions and triggers provide a declarative
mechanism for implementing UI logic

Q&A

Backup

ViewModel Blog Posts

• The Case for ViewModel
http://www.nikhilk.net/Why-ViewModel.aspx

• View/ViewModel Association - Convention and Configuration-based Approaches
http://www.nikhilk.net/View-ViewModel-Hookup-Convention-Configuration.aspx

• ViewModel Pattern for Silverlight - Options for Hooking a View to its Model
http://www.nikhilk.net/ViewModel-View-Hookup-Options.aspx

• View/ViewModel Interaction - Bindings, Commands and Triggers
http://www.nikhilk.net/View-ViewModel-Interaction.aspx

• Dialogs and ViewModel - Using Tasks as a Pattern
http://www.nikhilk.net/ViewModel-Dialogs-Task-Pattern.aspx

• ViewModel with MVC/Navigation in Silverlight
http://www.nikhilk.net/Silverlight-ViewModel-MVC.aspx

…a powerful
development platform
for creating engaging,
interactive applications
for many screens across
the Web, desktop, and
mobile devices

What is Silverlight?

…a free plug-in powered by
the .NET framework that is
compatible across multiple
browsers, devices and
operating systems to bring
a new level of interactivity
wherever the Web works.

With support for advanced data integration, multithreading,
HD video using IIS Smooth Streaming, and built in content
protection, Silverlight enables online and offline applications
for a broad range of business and consumer scenarios.

Silverlight 4 Themes

Media

Rich Experiences

Beyond the Browser

Business

Applications

Developer Tools

© 2009 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks
and/or trademarks in the U.S. and/or other countries.The information herein is for informational purposes only and represents the current view of
Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted
to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this
presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

