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reading code
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atomic data types
type example java equivalent
string "foo" String

character \f Character

regex #"fo*" Pattern

a. p. integer 42 Int/Long/BigInteger

double 3.14159 Double

a.p. double 3.14159M BigDecimal

boolean true Boolean

nil  nil null

ratio 22/7 N/A

symbol  foo, + N/A

keyword :foo, ::foo N/A
3
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data literals

type properties example

list singly-linked,
insert at front (1 2 3)

vector indexed,
insert at rear [1 2 3]

map key/value
{:a 100
 :b 90}

set key #{:a :b}

4
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(println "Hello World")

function call

fn call argsemantics:

structure: symbol string

list
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(defn greet
  "Returns a friendly greeting"
  [your-name]
  (str "Hello, " your-name))

function definition

define a fn fn name
docstring

arguments

fn body
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(defn greet
  "Returns a friendly greeting"
  [your-name]
  (str "Hello, " your-name))

it's all data

symbol symbol
string

vector

list
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(defn ^String greet
  "Returns a friendly greeting"
  [your-name]
  (str "Hello, " your-name))

metadata

prefix with ^ class name or
arbitrary map
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what is OO?
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objects provide...

Object
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methods
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Object
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polymorphism

12

Object
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types

13

Interface

Interface

Base Class
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namespaces
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Interface

Interface

Base Class
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structure
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Interface

Interface

Base Class

struct
xxxx 
yyyy
zzzz

struct
xxxx 
yyyy
zzzz
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uncontrolled mutation
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Interface

Interface

Base Class

struct
xxxx 
yyyy
zzzz

Uncontrolled Mutation

16Monday, October 4, 2010



clojure features 
are a la carte
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foundation
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identity

generic data
accessvalues

perception

functions

Vars
struct
xxxx 
yyyy
zzzz

namespaces

typespolymorphism

structure
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superstructure
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identity

generic data
accessvalues
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functions
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structure
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in this talk

20

identity

generic data
accessvalues

perception

functions

Vars
struct
xxxx 
yyyy
zzzz

namespaces

typespolymorphism

structure

protocols

records
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records
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(defrecord Foo [a b c])
-> user.Foo

defrecord

named type
with slots
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(defrecord Foo [a b c])
-> user.Foo

defrecord

named type
with slots

(def f (Foo. 1 2 3))
-> #'user/f positional 

constructor
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(defrecord Foo [a b c])
-> user.Foo

defrecord

named type
with slots

(def f (Foo. 1 2 3))
-> #'user/f positional 

constructor
(:b f)
-> 2 keyword access
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(defrecord Foo [a b c])
-> user.Foo

defrecord

named type
with slots

(def f (Foo. 1 2 3))
-> #'user/f positional 

constructor
(:b f)
-> 2 keyword access

(class f)
-> user.Foo

plain ol' class
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(defrecord Foo [a b c])
-> user.Foo

defrecord

named type
with slots

(def f (Foo. 1 2 3))
-> #'user/f positional 

constructor
(:b f)
-> 2 keyword access

(class f)
-> user.Foo

plain ol' class
(supers (class f))
-> #{clojure.lang.IObj clojure.lang.IKeywordLookup java.util.Map
 clojure.lang.IPersistentMap clojure.lang.IMeta java.lang.Object
 java.lang.Iterable clojure.lang.ILookup clojure.lang.Seqable
 clojure.lang.Counted clojure.lang.IPersistentCollection
 clojure.lang.Associative}

rasydht*
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(defrecord Foo [a b c])
-> user.Foo

defrecord

named type
with slots

(def f (Foo. 1 2 3))
-> #'user/f positional 

constructor
(:b f)
-> 2 keyword access

(class f)
-> user.Foo

plain ol' class
(supers (class f))
-> #{clojure.lang.IObj clojure.lang.IKeywordLookup java.util.Map
 clojure.lang.IPersistentMap clojure.lang.IMeta java.lang.Object
 java.lang.Iterable clojure.lang.ILookup clojure.lang.Seqable
 clojure.lang.Counted clojure.lang.IPersistentCollection
 clojure.lang.Associative}

rasydht*

*Rich abstracts so you don't have to
22
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(def stu {:fname "Stu"
          :lname "Halloway"
          :address {:street "200 N Mangum"
                    :city "Durham"
                    :state "NC"
                    :zip 27701}})

from maps...

23

data-oriented
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from maps...

23

(:lname stu)
=> "Halloway"

keyword access

data-oriented
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(def stu {:fname "Stu"
          :lname "Halloway"
          :address {:street "200 N Mangum"
                    :city "Durham"
                    :state "NC"
                    :zip 27701}})

from maps...

23

(:lname stu)
=> "Halloway"

keyword access

(-> stu :address :city)
=> "Durham"

nested access

data-oriented
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(def stu {:fname "Stu"
          :lname "Halloway"
          :address {:street "200 N Mangum"
                    :city "Durham"
                    :state "NC"
                    :zip 27701}})

from maps...

23

(:lname stu)
=> "Halloway"

keyword access

(-> stu :address :city)
=> "Durham"

nested access

(assoc stu :fname "Stuart")
=> {:fname "Stuart", :lname "Halloway", 
    :address ...}

update

data-oriented
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(def stu {:fname "Stu"
          :lname "Halloway"
          :address {:street "200 N Mangum"
                    :city "Durham"
                    :state "NC"
                    :zip 27701}})

from maps...

23

(:lname stu)
=> "Halloway"

keyword access

(-> stu :address :city)
=> "Durham"

nested access

(assoc stu :fname "Stuart")
=> {:fname "Stuart", :lname "Halloway", 
    :address ...}

update

(update-in stu [:address :zip] inc)
=> {:address {:street "200 N Mangum", 
              :zip 27702 ...} ...}

nested
update

data-oriented
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(defrecord Person [fname lname address])
(defrecord Address [street city state zip])
(def stu (Person. "Stu" "Halloway"
                  (Address. "200 N Mangum"
                            "Durham"
                            "NC"
                            27701)))

...to records!

24

(:lname stu)
=> "Halloway"

(-> stu :address :city)
=> "Durham"

(assoc stu :fname "Stuart")
=> :user.Person{:fname "Stuart", :lname"Halloway", 
                :address ...}

(update-in stu [:address :zip] inc)
=> :user.Person{:address {:street "200 N Mangum", 
                          :zip 27702 ...} ...}
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(update-in stu [:address :zip] inc)
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still data-oriented:
everything works 

as before

object-oriented
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                            "NC"
                            27701)))

...to records!
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=> "Halloway"

(-> stu :address :city)
=> "Durham"

(assoc stu :fname "Stuart")
=> :user.Person{:fname "Stuart", :lname"Halloway", 
                :address ...}

(update-in stu [:address :zip] inc)
=> :user.Person{:address {:street "200 N Mangum", 
                          :zip 27702 ...} ...}

still data-oriented:
everything works 

as before

object-oriented

type is there
when you care
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protocols
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defprotocol

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))
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named set of generic functions

defprotocol

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))
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named set of generic functions

polymorphic on type of first argument

defprotocol

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))
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named set of generic functions

polymorphic on type of first argument

defines fns in same namespace as protocol

defprotocol

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))
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named set of generic functions

polymorphic on type of first argument

defines fns in same namespace as protocol

defprotocol

(defprotocol AProtocol
  "A doc string for AProtocol abstraction"
  (bar [a b] "bar docs")
  (baz [a] "baz docs"))
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extending a protocol
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inline

extending a protocol
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inline

extend protocol to multiple types

extending a protocol
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inline

extend protocol to multiple types

extend type to multiple protocols

extending a protocol
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inline

extend protocol to multiple types

extend type to multiple protocols

build directly from fns and maps

extending a protocol
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inline

extend protocol to multiple types

extend type to multiple protocols

build directly from fns and maps

extension happens in the protocol fns,
not in the types

extending a protocol
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inline

extend protocol to multiple types

extend type to multiple protocols

build directly from fns and maps

extension happens in the protocol fns,
not in the types

extending a protocol
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(deftype Bar [a b c]
  AProtocol
  (bar [this b] "Bar bar") 
  (baz [this] (str "Bar baz " c)))

(def b (Bar. 5 6 7))

(baz b)

=> "Bar baz 7"

extending inline

28
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(baz "a")

java.lang.IllegalArgumentException: 
No implementation of method: :baz of protocol: 
#'user/AProtocol found for class: java.lang.String

(extend-type String
  AProtocol
  (bar [s s2] (str s s2))
  (baz [s] (str "baz " s)))

(baz "a")

=> "baz a"

extend type to protocol(s)

29
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;; elided from clojure.java.io
(extend-protocol Coercions
  String
  (as-file [s] (File. s))
  (as-url [s] (URL. s))  
  
  File
  (as-file [f] f)
  (as-url [f] (.toURL f))

  URI
  (as-url [u] (.toURL u))
  (as-file [u] (as-file (as-url u))))

extending protocol to type(s)

30
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;; elided from clojure.java.io
(extend InputStream
  IOFactory
  (assoc default-streams-impl
    :make-input-stream 
    (fn [x opts] (BufferedInputStream. x))
    :make-reader 
    inputstream->reader))

(extend Reader
  IOFactory
  (assoc default-streams-impl
    :make-reader 
    (fn [x opts] (BufferedReader. x))))

roll-your-own

31
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(let [x 42 
      r (reify AProtocol 
          (bar [this b] "reify bar") 
          (baz [this ] (str "reify baz " x)))]
  (baz r))

=> "reify baz 42"

reify

32
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(let [x 42 
      r (reify AProtocol 
          (bar [this b] "reify bar") 
          (baz [this ] (str "reify baz " x)))]
  (baz r))

=> "reify baz 42"

reify

instantiate an
 unnamed type
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(let [x 42 
      r (reify AProtocol 
          (bar [this b] "reify bar") 
          (baz [this ] (str "reify baz " x)))]
  (baz r))

=> "reify baz 42"

reify

instantiate an
 unnamed type

implement 0 or 
more protocols

or interfaces

32
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(let [x 42 
      r (reify AProtocol 
          (bar [this b] "reify bar") 
          (baz [this ] (str "reify baz " x)))]
  (baz r))

=> "reify baz 42"

reify

instantiate an
 unnamed type

implement 0 or 
more protocols

or interfaces

closes over
environment

like fn

32
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the expression
problem
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the expression problem

abstraction

concretion

A

34
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the expression problem

abstraction

concretion

A B
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the expression problem

abstraction

concretion

A B

A should be able to work with 
B's abstractions, and vice versa,
without modification of 

the original code

34
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is this really a problem?

abstraction

concretion

A B

just use interfaces 
for abstraction (??)
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example: arraylist vs.
the abstractions

java.util.List

ArrayList

clojure.lang.Counted

clojure.lang.Seqable

?
36
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example: string vs.
the abstractions

java.util.List

String clojure.lang.Counted

clojure.lang.Seqable

?
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A can't inherit from B
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B is newer than A

A can't inherit from B

38

38Monday, October 4, 2010



B is newer than A

A is hard to change
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we don't control A

A can't inherit from B
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B is newer than A
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happens even within a single lib
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B is newer than A

A is hard to change

we don't control A

A can't inherit from B

happens even within a single lib
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some approaches
to the expression

problem
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1. wrappers

java.util.List

String

java.util.Collection

40

strings are not 
collections
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                   NiftyString    

so make a 
NiftyString that is

1. wrappers

java.util.List

String

java.util.Collection

40

strings are not 
collections
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wrappers = complexity
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ruin identity

wrappers = complexity

41

41Monday, October 4, 2010



ruin identity

ruin equality

wrappers = complexity
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ruin identity

ruin equality

cause nonlocal defects

wrappers = complexity
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ruin identity

ruin equality

cause nonlocal defects

wrappers = complexity

don't compose:             AB + AC != ABC
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ruin identity
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cause nonlocal defects
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41

have bad names
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String

2. monkey patching

42

strings are not 
collections

java.util.List

java.util.Collection
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String

2. monkey patching

42

strings are not 
collections

java.util.List

java.util.Collection

sneak in 
and change them!
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String

2. monkey patching

common in e.g. ruby
not possible in java

42

strings are not 
collections

java.util.List

java.util.Collection

sneak in 
and change them!
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monkey patching = complexity
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preserves identity (mostly)
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preserves identity (mostly)

ruins namespacing

causes nonlocal defects

monkey patching = complexity

43

forbidden in some languages

43Monday, October 4, 2010



3. generic functions (CLOS)

String

map

reduce

count

44
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3. generic functions (CLOS)

String

map

reduce

count

polymorphism 
lives in the fns

44
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3. generic functions (CLOS)

don't touch existing 
implementation,

just use it
String

map

reduce

count

polymorphism 
lives in the fns
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polymorphism a la carte

45

values polymorphismtypes
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polymorphism in the fns, not the types

polymorphism a la carte

45

values polymorphismtypes
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polymorphism in the fns, not the types

no "isa" requirement

polymorphism a la carte

45

values polymorphismtypes
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polymorphism in the fns, not the types

no "isa" requirement

no type intrusion necessary

polymorphism a la carte

45

values polymorphismtypes
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polymorphism in the fns, not the types

no "isa" requirement

no type intrusion necessary

polymorphism a la carte

45

values polymorphismtypes
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protocols = generic functions 
               - arbitrary dispatch 
                + speed
                + grouping

(and still powerful enough to
solve the expression problem!)
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where are we?

47

identity

generic data
accessvalues

perception

functions

Vars
struct
xxxx 
yyyy
zzzz

namespaces

typespolymorphism

structure

protocols,
(multimethods)

defrecord,
(deftype)

collections
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for more 
information
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community
main Clojure site

http://clojure.org/

google group

http://groups.google.com/group/clojure

Clojure/core team

http://clojure.com

The conj

http://clojure-conj.org/ 
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free resources
labrepl

http://github.com/relevance/labrepl

screencasts

http://clojure.blip.tv/

full disclojure screencasts

http://vimeo.com/channels/fulldisclojure

mark volkmann’s Clojure article

http://java.ociweb.com/mark/clojure/article.html
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thanks!

http://clojure.org
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extra
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example:
rock/paper/

scissors
http://rubyquiz.com/quiz16.html

53

53Monday, October 4, 2010

http://rubyquiz.com/quiz16.html
http://rubyquiz.com/quiz16.html


(defprotocol Player
  (choose [p])
  (update-strategy [p me you]))

a player

54
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(defprotocol Player
  (choose [p])
  (update-strategy [p me you]))

a player

pick :rock, :paper, 
or :scissors

54
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(defprotocol Player
  (choose [p])
  (update-strategy [p me you]))

a player

pick :rock, :paper, 
or :scissors

return an updated 
Player based on what 

you and I did
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(defrecord Stubborn [choice]
  Player
  (choose [_] choice)
  (update-strategy [this _ _] this))

stubborn player
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(defrecord Stubborn [choice]
  Player
  (choose [_] choice)
  (update-strategy [this _ _] this))

stubborn player

initialize with choice
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(defrecord Stubborn [choice]
  Player
  (choose [_] choice)
  (update-strategy [this _ _] this))

stubborn player

initialize with choice

play the choice
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(defrecord Stubborn [choice]
  Player
  (choose [_] choice)
  (update-strategy [this _ _] this))

stubborn player

initialize with choice

play the choice

never change
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(defrecord Mean [last-winner]
  Player
  (choose [_] 
   (if last-winner 
     last-winner 
     (random-choice)))
  (update-strategy [_ me you] 
    (Mean. (when (iwon? me you) me))))

mean player

56
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(defrecord Mean [last-winner]
  Player
  (choose [_] 
   (if last-winner 
     last-winner 
     (random-choice)))
  (update-strategy [_ me you] 
    (Mean. (when (iwon? me you) me))))

mean player

last thing that
worked for me
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(defrecord Mean [last-winner]
  Player
  (choose [_] 
   (if last-winner 
     last-winner 
     (random-choice)))
  (update-strategy [_ me you] 
    (Mean. (when (iwon? me you) me))))

mean player

last thing that
worked for me

play last winner
or random

56
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(defrecord Mean [last-winner]
  Player
  (choose [_] 
   (if last-winner 
     last-winner 
     (random-choice)))
  (update-strategy [_ me you] 
    (Mean. (when (iwon? me you) me))))

mean player

last thing that
worked for me

play last winner
or random

remember 
how/if I won

56
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deftype
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programming 
constructs are not 
like domain data
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use defrecord for 
domain information
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use defrecord for 
domain information

59

use deftype for
programming constructs
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(deftype Bar [a b c])
-> user.Bar

deftype

still a named
type with slots

60
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(deftype Bar [a b c])
-> user.Bar

deftype

still a named
type with slots

(def o (Bar. 1 2 3))
-> #'user/o constructor,

check

(.b o)
-> 2 direct field

access only

(class o)
-> user.Bar still a

plain ol' class

(supers (class o))
-> #{java.lang.Object} yoyo*

*you're on your own
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(into {} f)
-> {:a 1, :b 2, :c 3, :extra 4}

the other constructor

(def f (Foo. 1 2 3 {:meta 1} {:extra 4}))
-> #'user/f

(meta f)
-> {:meta 1}

metadata

extra k/v 
pairs
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details
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multimethods
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square.draw(canvas)

circle.draw(canvas)

p

f1(square, canvas)

f2(circle, canvas)

polymorphism
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square.draw(canvas)

circle.draw(canvas)

p() {return this.class;}

f1(square, canvas)

f2(circle, canvas)

p is just a function
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(defmulti blank? class)

clojure multimethods

dispatch by
class of first arg
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no impl yet!

(defmethod blank? String [s]
 (every? #(Character/isWhitespace %)) s))

add impls 
anytime
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(defmulti blank? class)

clojure multimethods

dispatch by
class of first arg

(blank? "blah")
-> No method in multimethod 'blank?' 
   for dispatch value: class java.lang.String"

no impl yet!

(defmethod blank? String [s]
 (every? #(Character/isWhitespace %)) s))

add impls 
anytime

(blank? "blah")
-> false
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square.draw(canvas)

circle.draw(canvas)

p(this, that) 
{return this.class;}

f1(square, canvas)

f2(circle, canvas)

this isn’t special
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(fn [this, that]
  [(class this) 
   (class that)])

(fn [square, canvas])

check all args

(fn [circle, canvas])

(fn [square, surface])

(fn [circle, surface])
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(fn [this, that]
  [(class this)
   (opaque? this) 
   (class that)])

check arg twice

fn1
fn2
fn3
fn4
fn5
fn6
fn7
fn8
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(defmulti coerce 
  (fn [dest-class src-inst] 
    [dest-class (class src-inst)]))

example: coerce

define a
multimethod

based on 
dest (a class)

and src 
(an inst)
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(defmethod coerce 
  [java.io.File String] 
  [_ str] 
  (java.io.File. str))

(defmethod coerce 
  [Boolean/TYPE String] [_ str]
  (contains? 
   #{"on" "yes" "true"} 
   (.toLowerCase str)))

method impls

dispatch value
to match

args body
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(defmethod coerce 
  :default 
  [dest-cls obj] 
  (cast dest-cls obj))

defaults
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(defmulti whatami? class)

(defmethod whatami? java.util.Collection 
  [_] "a collection")

(whatami? (java.util.LinkedList.))
-> "a collection"

(defmethod whatami? java.util.List 
  [_] "a list")

(whatami? (java.util.LinkedList.))
-> "a list"

class inheritance

most derived
type wins

add methods
anytime
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(defmulti interest-rate :type)
(defmethod interest-rate ::account 
  [_] 0M)
(defmethod interest-rate ::savings 
  [_] 0.02)

name inheritance

double colon (::) is shorthand for resolving
keyword into the current namespace, e.g.

::savings == :my.current.ns/savings 
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(derive ::checking ::account)
(derive ::savings ::acount)

(interest-rate {:type ::checking})
-> 0M

deriving names

base namederived name

there is no ::checking method, so select
method for base name ::account
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multimethods lfu

function notes

prefer-method resolve conflicts

methods reflect on {dispatch, meth} pairs

get-method reflect by dispatch

remove-method remove by dispatch

prefers reflect over preferences
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multimethod elegance
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